Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018) (Proof shortened by AV, 5-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | addmodid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn | |
|
2 | 1 | mullidd | |
3 | 2 | 3ad2ant2 | |
4 | 3 | eqcomd | |
5 | 4 | oveq1d | |
6 | 5 | oveq1d | |
7 | 1zzd | |
|
8 | nnrp | |
|
9 | 8 | 3ad2ant2 | |
10 | nn0re | |
|
11 | 10 | rexrd | |
12 | 11 | 3ad2ant1 | |
13 | nn0ge0 | |
|
14 | 13 | 3ad2ant1 | |
15 | simp3 | |
|
16 | 0xr | |
|
17 | nnre | |
|
18 | 17 | rexrd | |
19 | 18 | 3ad2ant2 | |
20 | elico1 | |
|
21 | 16 19 20 | sylancr | |
22 | 12 14 15 21 | mpbir3and | |
23 | muladdmodid | |
|
24 | 7 9 22 23 | syl3anc | |
25 | 6 24 | eqtrd | |