Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | muladdmodid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red | |
|
2 | rpxr | |
|
3 | elico2 | |
|
4 | 1 2 3 | syl2anc | |
5 | 4 | adantl | |
6 | zcn | |
|
7 | rpcn | |
|
8 | mulcl | |
|
9 | 6 7 8 | syl2an | |
10 | 9 | adantr | |
11 | recn | |
|
12 | 11 | 3ad2ant1 | |
13 | 12 | adantl | |
14 | 10 13 | addcomd | |
15 | 14 | oveq1d | |
16 | simp1 | |
|
17 | 16 | adantl | |
18 | simpr | |
|
19 | 18 | adantr | |
20 | simpll | |
|
21 | modcyc | |
|
22 | 17 19 20 21 | syl3anc | |
23 | 18 16 | anim12ci | |
24 | 3simpc | |
|
25 | 24 | adantl | |
26 | modid | |
|
27 | 23 25 26 | syl2anc | |
28 | 15 22 27 | 3eqtrd | |
29 | 28 | ex | |
30 | 5 29 | sylbid | |
31 | 30 | 3impia | |