Metamath Proof Explorer


Theorem absfun

Description: The absolute value is a function. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion absfun Fun abs

Proof

Step Hyp Ref Expression
1 absf abs : ℂ ⟶ ℝ
2 ffun ( abs : ℂ ⟶ ℝ → Fun abs )
3 1 2 ax-mp Fun abs