| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abslt2sqd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
abslt2sqd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
abslt2sqd.l |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ) |
| 4 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 5 |
4
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
4
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 7 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 8 |
7
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 9 |
7
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 10 |
|
lt2sq |
⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ∧ ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) → ( ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 11 |
5 6 8 9 10
|
syl22anc |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 12 |
3 11
|
mpbid |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 13 |
|
absresq |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 15 |
|
absresq |
⊢ ( 𝐵 ∈ ℝ → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 17 |
14 16
|
breq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) |
| 18 |
12 17
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) |