Description: Generalization of the Axiom of Choice to classes. Theorem 10.46 of TakeutiZaring p. 97. (Contributed by NM, 3-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ac6s.1 | ⊢ 𝐴 ∈ V | |
ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | ac6s3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s.1 | ⊢ 𝐴 ∈ V | |
2 | ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
3 | 1 2 | ac6s2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
4 | exsimpr | ⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 𝜓 ) | |
5 | 3 4 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 𝜓 ) |