Metamath Proof Explorer


Theorem ac6s2

Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 . (Contributed by NM, 29-Sep-2006)

Ref Expression
Hypotheses ac6s.1 𝐴 ∈ V
ac6s.2 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
Assertion ac6s2 ( ∀ 𝑥𝐴𝑦 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ac6s.1 𝐴 ∈ V
2 ac6s.2 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
3 rexv ( ∃ 𝑦 ∈ V 𝜑 ↔ ∃ 𝑦 𝜑 )
4 3 ralbii ( ∀ 𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀ 𝑥𝐴𝑦 𝜑 )
5 1 2 ac6s ( ∀ 𝑥𝐴𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥𝐴 𝜓 ) )
6 ffn ( 𝑓 : 𝐴 ⟶ V → 𝑓 Fn 𝐴 )
7 6 anim1i ( ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥𝐴 𝜓 ) → ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 𝜓 ) )
8 7 eximi ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥𝐴 𝜓 ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 𝜓 ) )
9 5 8 syl ( ∀ 𝑥𝐴𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 𝜓 ) )
10 4 9 sylbir ( ∀ 𝑥𝐴𝑦 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 𝜓 ) )