| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ac6s.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
ac6s.2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
rexv |
⊢ ( ∃ 𝑦 ∈ V 𝜑 ↔ ∃ 𝑦 𝜑 ) |
| 4 |
3
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ) |
| 5 |
1 2
|
ac6s |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 6 |
|
ffn |
⊢ ( 𝑓 : 𝐴 ⟶ V → 𝑓 Fn 𝐴 ) |
| 7 |
6
|
anim1i |
⊢ ( ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 8 |
7
|
eximi |
⊢ ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 9 |
5 8
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 10 |
4 9
|
sylbir |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |