Metamath Proof Explorer


Theorem ac6s5

Description: Generalization of the Axiom of Choice to proper classes. B is a collection B ( x ) of nonempty, possible proper classes. Remark after Theorem 10.46 of TakeutiZaring p. 98. (Contributed by NM, 27-Mar-2006)

Ref Expression
Hypothesis ac6s4.1 𝐴 ∈ V
Assertion ac6s5 ( ∀ 𝑥𝐴 𝐵 ≠ ∅ → ∃ 𝑓𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ac6s4.1 𝐴 ∈ V
2 1 ac6s4 ( ∀ 𝑥𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) )
3 exsimpr ( ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) → ∃ 𝑓𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 )
4 2 3 syl ( ∀ 𝑥𝐴 𝐵 ≠ ∅ → ∃ 𝑓𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 )