Metamath Proof Explorer


Theorem ad5ant135

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Hypothesis ad5ant.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion ad5ant135 ( ( ( ( ( 𝜑𝜏 ) ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 ad5ant.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 1 ad4ant134 ( ( ( ( 𝜑𝜏 ) ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 )
3 2 adantlr ( ( ( ( ( 𝜑𝜏 ) ∧ 𝜓 ) ∧ 𝜂 ) ∧ 𝜒 ) → 𝜃 )