Step |
Hyp |
Ref |
Expression |
1 |
|
addcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
2 |
1
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐵 + 𝐴 ) + 𝐶 ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐵 + 𝐴 ) + 𝐶 ) ) |
4 |
|
addass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |
5 |
|
addass |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) + 𝐶 ) = ( 𝐵 + ( 𝐴 + 𝐶 ) ) ) |
6 |
5
|
3com12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐴 ) + 𝐶 ) = ( 𝐵 + ( 𝐴 + 𝐶 ) ) ) |
7 |
3 4 6
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( 𝐵 + ( 𝐴 + 𝐶 ) ) ) |