Metamath Proof Explorer


Theorem add12

Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion add12 ABCA+B+C=B+A+C

Proof

Step Hyp Ref Expression
1 addcom ABA+B=B+A
2 1 oveq1d ABA+B+C=B+A+C
3 2 3adant3 ABCA+B+C=B+A+C
4 addass ABCA+B+C=A+B+C
5 addass BACB+A+C=B+A+C
6 5 3com12 ABCB+A+C=B+A+C
7 3 4 6 3eqtr3d ABCA+B+C=B+A+C