Metamath Proof Explorer


Theorem addcncf

Description: The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses addcncf.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝑋cn→ ℂ ) )
addcncf.b ( 𝜑 → ( 𝑥𝑋𝐵 ) ∈ ( 𝑋cn→ ℂ ) )
Assertion addcncf ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 + 𝐵 ) ) ∈ ( 𝑋cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 addcncf.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝑋cn→ ℂ ) )
2 addcncf.b ( 𝜑 → ( 𝑥𝑋𝐵 ) ∈ ( 𝑋cn→ ℂ ) )
3 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
4 3 addcn + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) )
5 4 a1i ( 𝜑 → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) )
6 3 5 1 2 cncfmpt2f ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 + 𝐵 ) ) ∈ ( 𝑋cn→ ℂ ) )