Metamath Proof Explorer


Theorem addcncf

Description: The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses addcncf.a φxXA:Xcn
addcncf.b φxXB:Xcn
Assertion addcncf φxXA+B:Xcn

Proof

Step Hyp Ref Expression
1 addcncf.a φxXA:Xcn
2 addcncf.b φxXB:Xcn
3 eqid TopOpenfld=TopOpenfld
4 3 addcn +TopOpenfld×tTopOpenfldCnTopOpenfld
5 4 a1i φ+TopOpenfld×tTopOpenfldCnTopOpenfld
6 3 5 1 2 cncfmpt2f φxXA+B:Xcn