Metamath Proof Explorer


Theorem addsub12

Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005)

Ref Expression
Assertion addsub12 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵𝐶 ) ) = ( 𝐵 + ( 𝐴𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 subadd23 ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐶 ) + 𝐵 ) = ( 𝐴 + ( 𝐵𝐶 ) ) )
2 subcl ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴𝐶 ) ∈ ℂ )
3 addcom ( ( ( 𝐴𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐶 ) + 𝐵 ) = ( 𝐵 + ( 𝐴𝐶 ) ) )
4 2 3 stoic3 ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐶 ) + 𝐵 ) = ( 𝐵 + ( 𝐴𝐶 ) ) )
5 1 4 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵𝐶 ) ) = ( 𝐵 + ( 𝐴𝐶 ) ) )
6 5 3com23 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵𝐶 ) ) = ( 𝐵 + ( 𝐴𝐶 ) ) )