Metamath Proof Explorer


Theorem addsubsub23

Description: Swap the second and the third terms in a difference of a sum and a difference (or, vice versa, in a sum of a difference and a sum). (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
subaddd.3 ( 𝜑𝐶 ∈ ℂ )
addsub4d.4 ( 𝜑𝐷 ∈ ℂ )
Assertion addsubsub23 ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐶𝐷 ) ) = ( ( 𝐴𝐶 ) + ( 𝐵 + 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 subaddd.3 ( 𝜑𝐶 ∈ ℂ )
4 addsub4d.4 ( 𝜑𝐷 ∈ ℂ )
5 1 2 addcld ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ )
6 5 3 4 subsubd ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐶𝐷 ) ) = ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) + 𝐷 ) )
7 1 2 3 addsubd ( 𝜑 → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴𝐶 ) + 𝐵 ) )
8 7 oveq1d ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) + 𝐷 ) = ( ( ( 𝐴𝐶 ) + 𝐵 ) + 𝐷 ) )
9 1 3 subcld ( 𝜑 → ( 𝐴𝐶 ) ∈ ℂ )
10 9 2 4 addassd ( 𝜑 → ( ( ( 𝐴𝐶 ) + 𝐵 ) + 𝐷 ) = ( ( 𝐴𝐶 ) + ( 𝐵 + 𝐷 ) ) )
11 6 8 10 3eqtrd ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐶𝐷 ) ) = ( ( 𝐴𝐶 ) + ( 𝐵 + 𝐷 ) ) )