Metamath Proof Explorer


Theorem addsubsub23

Description: Swap the second and the third terms in a difference of a sum and a difference (or, vice versa, in a sum of a difference and a sum). (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
pncand.2
|- ( ph -> B e. CC )
subaddd.3
|- ( ph -> C e. CC )
addsub4d.4
|- ( ph -> D e. CC )
Assertion addsubsub23
|- ( ph -> ( ( A + B ) - ( C - D ) ) = ( ( A - C ) + ( B + D ) ) )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 pncand.2
 |-  ( ph -> B e. CC )
3 subaddd.3
 |-  ( ph -> C e. CC )
4 addsub4d.4
 |-  ( ph -> D e. CC )
5 1 2 addcld
 |-  ( ph -> ( A + B ) e. CC )
6 5 3 4 subsubd
 |-  ( ph -> ( ( A + B ) - ( C - D ) ) = ( ( ( A + B ) - C ) + D ) )
7 1 2 3 addsubd
 |-  ( ph -> ( ( A + B ) - C ) = ( ( A - C ) + B ) )
8 7 oveq1d
 |-  ( ph -> ( ( ( A + B ) - C ) + D ) = ( ( ( A - C ) + B ) + D ) )
9 1 3 subcld
 |-  ( ph -> ( A - C ) e. CC )
10 9 2 4 addassd
 |-  ( ph -> ( ( ( A - C ) + B ) + D ) = ( ( A - C ) + ( B + D ) ) )
11 6 8 10 3eqtrd
 |-  ( ph -> ( ( A + B ) - ( C - D ) ) = ( ( A - C ) + ( B + D ) ) )