Description: Given a is equivalent to b, b is equivalent to T. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aiffbbtat.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| aiffbbtat.2 | ⊢ ( 𝜓 ↔ ⊤ ) | ||
| Assertion | aiffbbtat | ⊢ ( 𝜑 ↔ ⊤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aiffbbtat.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | aiffbbtat.2 | ⊢ ( 𝜓 ↔ ⊤ ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝜑 ↔ ⊤ ) |