Description: Given a is equivalent to b, b is equivalent to F. there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aisbbisfaisf.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
aisbbisfaisf.2 | ⊢ ( 𝜓 ↔ ⊥ ) | ||
Assertion | aisbbisfaisf | ⊢ ( 𝜑 ↔ ⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aisbbisfaisf.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
2 | aisbbisfaisf.2 | ⊢ ( 𝜓 ↔ ⊥ ) | |
3 | 1 2 | bitri | ⊢ ( 𝜑 ↔ ⊥ ) |