Description: Given a is equivalent to b, b is equivalent to F. there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aisbbisfaisf.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| aisbbisfaisf.2 | ⊢ ( 𝜓 ↔ ⊥ ) | ||
| Assertion | aisbbisfaisf | ⊢ ( 𝜑 ↔ ⊥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisbbisfaisf.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | aisbbisfaisf.2 | ⊢ ( 𝜓 ↔ ⊥ ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝜑 ↔ ⊥ ) |