Metamath Proof Explorer


Theorem aisbbisfaisf

Description: Given a is equivalent to b, b is equivalent to F. there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016)

Ref Expression
Hypotheses aisbbisfaisf.1
|- ( ph <-> ps )
aisbbisfaisf.2
|- ( ps <-> F. )
Assertion aisbbisfaisf
|- ( ph <-> F. )

Proof

Step Hyp Ref Expression
1 aisbbisfaisf.1
 |-  ( ph <-> ps )
2 aisbbisfaisf.2
 |-  ( ps <-> F. )
3 1 2 bitri
 |-  ( ph <-> F. )