| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
| 2 |
|
nnenom |
⊢ ℕ ≈ ω |
| 3 |
2
|
ensymi |
⊢ ω ≈ ℕ |
| 4 |
1 3
|
eqbrtri |
⊢ ( ℵ ‘ ∅ ) ≈ ℕ |
| 5 |
|
ruc |
⊢ ℕ ≺ ℝ |
| 6 |
|
ensdomtr |
⊢ ( ( ( ℵ ‘ ∅ ) ≈ ℕ ∧ ℕ ≺ ℝ ) → ( ℵ ‘ ∅ ) ≺ ℝ ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( ℵ ‘ ∅ ) ≺ ℝ |
| 8 |
|
alephnbtwn2 |
⊢ ¬ ( ( ℵ ‘ ∅ ) ≺ ℝ ∧ ℝ ≺ ( ℵ ‘ suc ∅ ) ) |
| 9 |
7 8
|
mptnan |
⊢ ¬ ℝ ≺ ( ℵ ‘ suc ∅ ) |
| 10 |
|
df-1o |
⊢ 1o = suc ∅ |
| 11 |
10
|
fveq2i |
⊢ ( ℵ ‘ 1o ) = ( ℵ ‘ suc ∅ ) |
| 12 |
11
|
breq2i |
⊢ ( ℝ ≺ ( ℵ ‘ 1o ) ↔ ℝ ≺ ( ℵ ‘ suc ∅ ) ) |
| 13 |
9 12
|
mtbir |
⊢ ¬ ℝ ≺ ( ℵ ‘ 1o ) |
| 14 |
|
fvex |
⊢ ( ℵ ‘ 1o ) ∈ V |
| 15 |
|
reex |
⊢ ℝ ∈ V |
| 16 |
|
domtri |
⊢ ( ( ( ℵ ‘ 1o ) ∈ V ∧ ℝ ∈ V ) → ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) ) ) |
| 17 |
14 15 16
|
mp2an |
⊢ ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) ) |
| 18 |
13 17
|
mpbir |
⊢ ( ℵ ‘ 1o ) ≼ ℝ |