Step |
Hyp |
Ref |
Expression |
1 |
|
aleph1re |
⊢ ( ℵ ‘ 1o ) ≼ ℝ |
2 |
|
reex |
⊢ ℝ ∈ V |
3 |
|
numth3 |
⊢ ( ℝ ∈ V → ℝ ∈ dom card ) |
4 |
2 3
|
ax-mp |
⊢ ℝ ∈ dom card |
5 |
|
nnenom |
⊢ ℕ ≈ ω |
6 |
5
|
ensymi |
⊢ ω ≈ ℕ |
7 |
|
ruc |
⊢ ℕ ≺ ℝ |
8 |
|
ensdomtr |
⊢ ( ( ω ≈ ℕ ∧ ℕ ≺ ℝ ) → ω ≺ ℝ ) |
9 |
6 7 8
|
mp2an |
⊢ ω ≺ ℝ |
10 |
|
sdomdom |
⊢ ( ω ≺ ℝ → ω ≼ ℝ ) |
11 |
9 10
|
ax-mp |
⊢ ω ≼ ℝ |
12 |
|
resdomq |
⊢ ℚ ≺ ℝ |
13 |
|
infdif |
⊢ ( ( ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ ) → ( ℝ ∖ ℚ ) ≈ ℝ ) |
14 |
4 11 12 13
|
mp3an |
⊢ ( ℝ ∖ ℚ ) ≈ ℝ |
15 |
14
|
ensymi |
⊢ ℝ ≈ ( ℝ ∖ ℚ ) |
16 |
|
domentr |
⊢ ( ( ( ℵ ‘ 1o ) ≼ ℝ ∧ ℝ ≈ ( ℝ ∖ ℚ ) ) → ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) ) |
17 |
1 15 16
|
mp2an |
⊢ ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) |