Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aleph1irr | ⊢ ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph1re | ⊢ ( ℵ ‘ 1o ) ≼ ℝ | |
| 2 | reex | ⊢ ℝ ∈ V | |
| 3 | numth3 | ⊢ ( ℝ ∈ V → ℝ ∈ dom card ) | |
| 4 | 2 3 | ax-mp | ⊢ ℝ ∈ dom card |
| 5 | nnenom | ⊢ ℕ ≈ ω | |
| 6 | 5 | ensymi | ⊢ ω ≈ ℕ |
| 7 | ruc | ⊢ ℕ ≺ ℝ | |
| 8 | ensdomtr | ⊢ ( ( ω ≈ ℕ ∧ ℕ ≺ ℝ ) → ω ≺ ℝ ) | |
| 9 | 6 7 8 | mp2an | ⊢ ω ≺ ℝ |
| 10 | sdomdom | ⊢ ( ω ≺ ℝ → ω ≼ ℝ ) | |
| 11 | 9 10 | ax-mp | ⊢ ω ≼ ℝ |
| 12 | resdomq | ⊢ ℚ ≺ ℝ | |
| 13 | infdif | ⊢ ( ( ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ ) → ( ℝ ∖ ℚ ) ≈ ℝ ) | |
| 14 | 4 11 12 13 | mp3an | ⊢ ( ℝ ∖ ℚ ) ≈ ℝ |
| 15 | 14 | ensymi | ⊢ ℝ ≈ ( ℝ ∖ ℚ ) |
| 16 | domentr | ⊢ ( ( ( ℵ ‘ 1o ) ≼ ℝ ∧ ℝ ≈ ( ℝ ∖ ℚ ) ) → ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) ) | |
| 17 | 1 15 16 | mp2an | ⊢ ( ℵ ‘ 1o ) ≼ ( ℝ ∖ ℚ ) |