| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ∈ dom card ) |
| 2 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
| 3 |
|
ssdomg |
⊢ ( 𝐴 ∈ dom card → ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) ) |
| 4 |
1 2 3
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) |
| 5 |
|
sdomdom |
⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
| 7 |
|
numdom |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |
| 8 |
1 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ∈ dom card ) |
| 9 |
|
unnum |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
| 10 |
1 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
| 11 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 12 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom card → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) |
| 13 |
10 11 12
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 14 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
| 15 |
|
ssnum |
⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom card ) |
| 16 |
1 2 15
|
sylancl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom card ) |
| 17 |
|
undjudom |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 18 |
16 8 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 19 |
14 18
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 20 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 21 |
13 19 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
| 22 |
|
simp3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
| 23 |
|
sdomdom |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) |
| 24 |
|
relsdom |
⊢ Rel ≺ |
| 25 |
24
|
brrelex2i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → 𝐵 ∈ V ) |
| 26 |
|
djudom1 |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) |
| 27 |
23 25 26
|
syl2anc |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) |
| 28 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) |
| 29 |
28
|
ex |
⊢ ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 30 |
21 29
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 31 |
|
simp2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ 𝐴 ) |
| 32 |
|
domtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) |
| 33 |
32
|
ex |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 34 |
31 33
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
| 35 |
|
djuinf |
⊢ ( ω ≼ 𝐵 ↔ ω ≼ ( 𝐵 ⊔ 𝐵 ) ) |
| 36 |
35
|
biimpri |
⊢ ( ω ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ 𝐵 ) |
| 37 |
|
domrefg |
⊢ ( 𝐵 ∈ dom card → 𝐵 ≼ 𝐵 ) |
| 38 |
|
infdjuabs |
⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ∧ 𝐵 ≼ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) |
| 39 |
38
|
3com23 |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵 ∧ ω ≼ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) |
| 40 |
39
|
3expia |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵 ) → ( ω ≼ 𝐵 → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 41 |
37 40
|
mpdan |
⊢ ( 𝐵 ∈ dom card → ( ω ≼ 𝐵 → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 42 |
8 36 41
|
syl2im |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ω ≼ ( 𝐵 ⊔ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 43 |
34 42
|
syld |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
| 44 |
|
domen2 |
⊢ ( ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
| 45 |
44
|
biimpcd |
⊢ ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ( ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 46 |
43 45
|
sylcom |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ 𝐵 ) ) |
| 47 |
30 46
|
syld |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ 𝐵 ) ) |
| 48 |
|
domnsym |
⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
| 49 |
27 47 48
|
syl56 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 50 |
22 49
|
mt2d |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) |
| 51 |
|
domtri2 |
⊢ ( ( 𝐵 ∈ dom card ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom card ) → ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ↔ ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) ) |
| 52 |
8 16 51
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ↔ ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) ) |
| 53 |
50 52
|
mpbird |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 54 |
1
|
difexd |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
| 55 |
|
djudom2 |
⊢ ( ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ∧ ( 𝐴 ∖ 𝐵 ) ∈ V ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 56 |
53 54 55
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 57 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 58 |
21 56 57
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 59 |
|
domtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) → ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 60 |
31 58 59
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 61 |
|
djuinf |
⊢ ( ω ≼ ( 𝐴 ∖ 𝐵 ) ↔ ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
| 62 |
60 61
|
sylibr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 63 |
|
domrefg |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ dom card → ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 64 |
16 63
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 65 |
|
infdjuabs |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom card ∧ ω ≼ ( 𝐴 ∖ 𝐵 ) ∧ ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
| 66 |
16 62 64 65
|
syl3anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
| 67 |
|
domentr |
⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) → 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 68 |
58 66 67
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) |
| 69 |
|
sbth |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |
| 70 |
4 68 69
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |