Metamath Proof Explorer


Theorem infdif

Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in Enderton p. 164. (Contributed by NM, 22-Oct-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infdif ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≈ 𝐴 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ∈ dom card )
2 difss ( 𝐴𝐵 ) ⊆ 𝐴
3 ssdomg ( 𝐴 ∈ dom card → ( ( 𝐴𝐵 ) ⊆ 𝐴 → ( 𝐴𝐵 ) ≼ 𝐴 ) )
4 1 2 3 mpisyl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≼ 𝐴 )
5 sdomdom ( 𝐵𝐴𝐵𝐴 )
6 5 3ad2ant3 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐵𝐴 )
7 numdom ( ( 𝐴 ∈ dom card ∧ 𝐵𝐴 ) → 𝐵 ∈ dom card )
8 1 6 7 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐵 ∈ dom card )
9 unnum ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴𝐵 ) ∈ dom card )
10 1 8 9 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ∈ dom card )
11 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
12 ssdomg ( ( 𝐴𝐵 ) ∈ dom card → ( 𝐴 ⊆ ( 𝐴𝐵 ) → 𝐴 ≼ ( 𝐴𝐵 ) ) )
13 10 11 12 mpisyl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ≼ ( 𝐴𝐵 ) )
14 undif1 ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 )
15 ssnum ( ( 𝐴 ∈ dom card ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ) → ( 𝐴𝐵 ) ∈ dom card )
16 1 2 15 sylancl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ∈ dom card )
17 undjudom ( ( ( 𝐴𝐵 ) ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( 𝐴𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) )
18 16 8 17 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( ( 𝐴𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) )
19 14 18 eqbrtrrid ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) )
20 domtr ( ( 𝐴 ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ) → 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) )
21 13 19 20 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) )
22 simp3 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐵𝐴 )
23 sdomdom ( ( 𝐴𝐵 ) ≺ 𝐵 → ( 𝐴𝐵 ) ≼ 𝐵 )
24 relsdom Rel ≺
25 24 brrelex2i ( ( 𝐴𝐵 ) ≺ 𝐵𝐵 ∈ V )
26 djudom1 ( ( ( 𝐴𝐵 ) ≼ 𝐵𝐵 ∈ V ) → ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵𝐵 ) )
27 23 25 26 syl2anc ( ( 𝐴𝐵 ) ≺ 𝐵 → ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵𝐵 ) )
28 domtr ( ( 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵𝐵 ) ) → 𝐴 ≼ ( 𝐵𝐵 ) )
29 28 ex ( 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) → ( ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵𝐵 ) → 𝐴 ≼ ( 𝐵𝐵 ) ) )
30 21 29 syl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵𝐵 ) → 𝐴 ≼ ( 𝐵𝐵 ) ) )
31 simp2 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ω ≼ 𝐴 )
32 domtr ( ( ω ≼ 𝐴𝐴 ≼ ( 𝐵𝐵 ) ) → ω ≼ ( 𝐵𝐵 ) )
33 32 ex ( ω ≼ 𝐴 → ( 𝐴 ≼ ( 𝐵𝐵 ) → ω ≼ ( 𝐵𝐵 ) ) )
34 31 33 syl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 ≼ ( 𝐵𝐵 ) → ω ≼ ( 𝐵𝐵 ) ) )
35 djuinf ( ω ≼ 𝐵 ↔ ω ≼ ( 𝐵𝐵 ) )
36 35 biimpri ( ω ≼ ( 𝐵𝐵 ) → ω ≼ 𝐵 )
37 domrefg ( 𝐵 ∈ dom card → 𝐵𝐵 )
38 infdjuabs ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐵𝐵 ) → ( 𝐵𝐵 ) ≈ 𝐵 )
39 38 3com23 ( ( 𝐵 ∈ dom card ∧ 𝐵𝐵 ∧ ω ≼ 𝐵 ) → ( 𝐵𝐵 ) ≈ 𝐵 )
40 39 3expia ( ( 𝐵 ∈ dom card ∧ 𝐵𝐵 ) → ( ω ≼ 𝐵 → ( 𝐵𝐵 ) ≈ 𝐵 ) )
41 37 40 mpdan ( 𝐵 ∈ dom card → ( ω ≼ 𝐵 → ( 𝐵𝐵 ) ≈ 𝐵 ) )
42 8 36 41 syl2im ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( ω ≼ ( 𝐵𝐵 ) → ( 𝐵𝐵 ) ≈ 𝐵 ) )
43 34 42 syld ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 ≼ ( 𝐵𝐵 ) → ( 𝐵𝐵 ) ≈ 𝐵 ) )
44 domen2 ( ( 𝐵𝐵 ) ≈ 𝐵 → ( 𝐴 ≼ ( 𝐵𝐵 ) ↔ 𝐴𝐵 ) )
45 44 biimpcd ( 𝐴 ≼ ( 𝐵𝐵 ) → ( ( 𝐵𝐵 ) ≈ 𝐵𝐴𝐵 ) )
46 43 45 sylcom ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 ≼ ( 𝐵𝐵 ) → 𝐴𝐵 ) )
47 30 46 syld ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵𝐵 ) → 𝐴𝐵 ) )
48 domnsym ( 𝐴𝐵 → ¬ 𝐵𝐴 )
49 27 47 48 syl56 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( ( 𝐴𝐵 ) ≺ 𝐵 → ¬ 𝐵𝐴 ) )
50 22 49 mt2d ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ¬ ( 𝐴𝐵 ) ≺ 𝐵 )
51 domtri2 ( ( 𝐵 ∈ dom card ∧ ( 𝐴𝐵 ) ∈ dom card ) → ( 𝐵 ≼ ( 𝐴𝐵 ) ↔ ¬ ( 𝐴𝐵 ) ≺ 𝐵 ) )
52 8 16 51 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐵 ≼ ( 𝐴𝐵 ) ↔ ¬ ( 𝐴𝐵 ) ≺ 𝐵 ) )
53 50 52 mpbird ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐵 ≼ ( 𝐴𝐵 ) )
54 difexg ( 𝐴 ∈ dom card → ( 𝐴𝐵 ) ∈ V )
55 1 54 syl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ∈ V )
56 djudom2 ( ( 𝐵 ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ∈ V ) → ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) )
57 53 55 56 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) )
58 domtr ( ( 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) ) → 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) )
59 21 57 58 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) )
60 domtr ( ( ω ≼ 𝐴𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) ) → ω ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) )
61 31 59 60 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ω ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) )
62 djuinf ( ω ≼ ( 𝐴𝐵 ) ↔ ω ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) )
63 61 62 sylibr ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ω ≼ ( 𝐴𝐵 ) )
64 domrefg ( ( 𝐴𝐵 ) ∈ dom card → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )
65 16 64 syl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )
66 infdjuabs ( ( ( 𝐴𝐵 ) ∈ dom card ∧ ω ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) ) → ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) ≈ ( 𝐴𝐵 ) )
67 16 63 65 66 syl3anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) ≈ ( 𝐴𝐵 ) )
68 domentr ( ( 𝐴 ≼ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) ∧ ( ( 𝐴𝐵 ) ⊔ ( 𝐴𝐵 ) ) ≈ ( 𝐴𝐵 ) ) → 𝐴 ≼ ( 𝐴𝐵 ) )
69 59 67 68 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ≼ ( 𝐴𝐵 ) )
70 sbth ( ( ( 𝐴𝐵 ) ≼ 𝐴𝐴 ≼ ( 𝐴𝐵 ) ) → ( 𝐴𝐵 ) ≈ 𝐴 )
71 4 69 70 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≈ 𝐴 )