Description: A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | numdom | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon | ⊢ ( card ‘ 𝐴 ) ∈ On | |
2 | cardid2 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) | |
3 | domen2 | ⊢ ( ( card ‘ 𝐴 ) ≈ 𝐴 → ( 𝐵 ≼ ( card ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) | |
4 | 2 3 | syl | ⊢ ( 𝐴 ∈ dom card → ( 𝐵 ≼ ( card ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) |
5 | 4 | biimpar | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ≼ ( card ‘ 𝐴 ) ) |
6 | ondomen | ⊢ ( ( ( card ‘ 𝐴 ) ∈ On ∧ 𝐵 ≼ ( card ‘ 𝐴 ) ) → 𝐵 ∈ dom card ) | |
7 | 1 5 6 | sylancr | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |