| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djudom1 |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ) |
| 2 |
|
reldom |
⊢ Rel ≼ |
| 3 |
2
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 4 |
|
djucomen |
⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) ) |
| 6 |
2
|
brrelex2i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 7 |
|
djucomen |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) ) |
| 8 |
6 7
|
sylan |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) ) |
| 9 |
|
domen1 |
⊢ ( ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) → ( ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐵 ⊔ 𝐶 ) ) ) |
| 10 |
|
domen2 |
⊢ ( ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) → ( ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) ) |
| 11 |
9 10
|
sylan9bb |
⊢ ( ( ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐴 ) ∧ ( 𝐵 ⊔ 𝐶 ) ≈ ( 𝐶 ⊔ 𝐵 ) ) → ( ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) ) |
| 12 |
5 8 11
|
syl2anc |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐴 ⊔ 𝐶 ) ≼ ( 𝐵 ⊔ 𝐶 ) ↔ ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) ) |
| 13 |
1 12
|
mpbid |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ⊔ 𝐴 ) ≼ ( 𝐶 ⊔ 𝐵 ) ) |