| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1oex |
⊢ 1o ∈ V |
| 2 |
|
xpsnen2g |
⊢ ( ( 1o ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { 1o } × 𝐴 ) ≈ 𝐴 ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( { 1o } × 𝐴 ) ≈ 𝐴 ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝐵 ∈ 𝑊 → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 7 |
|
ensym |
⊢ ( ( { 1o } × 𝐴 ) ≈ 𝐴 → 𝐴 ≈ ( { 1o } × 𝐴 ) ) |
| 8 |
|
ensym |
⊢ ( ( { ∅ } × 𝐵 ) ≈ 𝐵 → 𝐵 ≈ ( { ∅ } × 𝐵 ) ) |
| 9 |
|
incom |
⊢ ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐴 ) ) |
| 10 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐴 ) ) = ∅ |
| 11 |
9 10
|
eqtri |
⊢ ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ∅ |
| 12 |
|
djuenun |
⊢ ( ( 𝐴 ≈ ( { 1o } × 𝐴 ) ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ∧ ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) |
| 13 |
11 12
|
mp3an3 |
⊢ ( ( 𝐴 ≈ ( { 1o } × 𝐴 ) ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) |
| 14 |
7 8 13
|
syl2an |
⊢ ( ( ( { 1o } × 𝐴 ) ≈ 𝐴 ∧ ( { ∅ } × 𝐵 ) ≈ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) |
| 15 |
3 6 14
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) |
| 16 |
|
df-dju |
⊢ ( 𝐵 ⊔ 𝐴 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐴 ) ) |
| 17 |
16
|
equncomi |
⊢ ( 𝐵 ⊔ 𝐴 ) = ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) |
| 18 |
15 17
|
breqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ 𝐴 ) ) |