Metamath Proof Explorer


Theorem djuassen

Description: Associative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djuassen ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝐴𝐵 ) ⊔ 𝐶 ) ≈ ( 𝐴 ⊔ ( 𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 simp1 ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝐴𝑉 )
3 xpsnen2g ( ( ∅ ∈ V ∧ 𝐴𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
4 1 2 3 sylancr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
5 4 ensymd ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝐴 ≈ ( { ∅ } × 𝐴 ) )
6 1oex 1o ∈ V
7 snex { ∅ } ∈ V
8 simp2 ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝐵𝑊 )
9 xpexg ( ( { ∅ } ∈ V ∧ 𝐵𝑊 ) → ( { ∅ } × 𝐵 ) ∈ V )
10 7 8 9 sylancr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { ∅ } × 𝐵 ) ∈ V )
11 xpsnen2g ( ( 1o ∈ V ∧ ( { ∅ } × 𝐵 ) ∈ V ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ ( { ∅ } × 𝐵 ) )
12 6 10 11 sylancr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ ( { ∅ } × 𝐵 ) )
13 xpsnen2g ( ( ∅ ∈ V ∧ 𝐵𝑊 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 )
14 1 8 13 sylancr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 )
15 entr ( ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ ( { ∅ } × 𝐵 ) ∧ ( { ∅ } × 𝐵 ) ≈ 𝐵 ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ 𝐵 )
16 12 14 15 syl2anc ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ 𝐵 )
17 16 ensymd ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝐵 ≈ ( { 1o } × ( { ∅ } × 𝐵 ) ) )
18 xp01disjl ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) = ∅
19 18 a1i ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) = ∅ )
20 djuenun ( ( 𝐴 ≈ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≈ ( { 1o } × ( { ∅ } × 𝐵 ) ) ∧ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) = ∅ ) → ( 𝐴𝐵 ) ≈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) )
21 5 17 19 20 syl3anc ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴𝐵 ) ≈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) )
22 snex { 1o } ∈ V
23 simp3 ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝐶𝑋 )
24 xpexg ( ( { 1o } ∈ V ∧ 𝐶𝑋 ) → ( { 1o } × 𝐶 ) ∈ V )
25 22 23 24 sylancr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { 1o } × 𝐶 ) ∈ V )
26 xpsnen2g ( ( 1o ∈ V ∧ ( { 1o } × 𝐶 ) ∈ V ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ ( { 1o } × 𝐶 ) )
27 6 25 26 sylancr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ ( { 1o } × 𝐶 ) )
28 xpsnen2g ( ( 1o ∈ V ∧ 𝐶𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 )
29 6 23 28 sylancr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 )
30 entr ( ( ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ ( { 1o } × 𝐶 ) ∧ ( { 1o } × 𝐶 ) ≈ 𝐶 ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ 𝐶 )
31 27 29 30 syl2anc ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ 𝐶 )
32 31 ensymd ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝐶 ≈ ( { 1o } × ( { 1o } × 𝐶 ) ) )
33 indir ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) )
34 xp01disjl ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅
35 xp01disjl ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅
36 35 xpeq2i ( { 1o } × ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) ) = ( { 1o } × ∅ )
37 xpindi ( { 1o } × ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) ) = ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) )
38 xp0 ( { 1o } × ∅ ) = ∅
39 36 37 38 3eqtr3i ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅
40 34 39 uneq12i ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) = ( ∅ ∪ ∅ )
41 un0 ( ∅ ∪ ∅ ) = ∅
42 40 41 eqtri ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) = ∅
43 33 42 eqtri ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅
44 43 a1i ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅ )
45 djuenun ( ( ( 𝐴𝐵 ) ≈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∧ 𝐶 ≈ ( { 1o } × ( { 1o } × 𝐶 ) ) ∧ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅ ) → ( ( 𝐴𝐵 ) ⊔ 𝐶 ) ≈ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) )
46 21 32 44 45 syl3anc ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝐴𝐵 ) ⊔ 𝐶 ) ≈ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) )
47 df-dju ( 𝐵𝐶 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) )
48 47 xpeq2i ( { 1o } × ( 𝐵𝐶 ) ) = ( { 1o } × ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) )
49 xpundi ( { 1o } × ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) = ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) )
50 48 49 eqtri ( { 1o } × ( 𝐵𝐶 ) ) = ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) )
51 50 uneq2i ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( 𝐵𝐶 ) ) ) = ( ( { ∅ } × 𝐴 ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) )
52 df-dju ( 𝐴 ⊔ ( 𝐵𝐶 ) ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( 𝐵𝐶 ) ) )
53 unass ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ( ( { ∅ } × 𝐴 ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) )
54 51 52 53 3eqtr4i ( 𝐴 ⊔ ( 𝐵𝐶 ) ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) )
55 46 54 breqtrrdi ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝐴𝐵 ) ⊔ 𝐶 ) ≈ ( 𝐴 ⊔ ( 𝐵𝐶 ) ) )