| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djuen |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ) |
| 3 |
|
relen |
⊢ Rel ≈ |
| 4 |
3
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 5 |
3
|
brrelex2i |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ∈ V ) |
| 6 |
|
id |
⊢ ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( 𝐵 ∩ 𝐷 ) = ∅ ) |
| 7 |
|
endjudisj |
⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ⊔ 𝐷 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
| 8 |
4 5 6 7
|
syl3an |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ⊔ 𝐷 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
| 9 |
|
entr |
⊢ ( ( ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ∧ ( 𝐵 ⊔ 𝐷 ) ≈ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
| 10 |
2 8 9
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |