| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
⊢ ∅ ∈ V |
| 2 |
|
relen |
⊢ Rel ≈ |
| 3 |
2
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 4 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 5 |
1 3 4
|
sylancr |
⊢ ( 𝐴 ≈ 𝐵 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 6 |
2
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 7 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ V ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 8 |
1 6 7
|
sylancr |
⊢ ( 𝐴 ≈ 𝐵 → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 9 |
8
|
ensymd |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ ( { ∅ } × 𝐵 ) ) |
| 10 |
|
entr |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ) → 𝐴 ≈ ( { ∅ } × 𝐵 ) ) |
| 11 |
9 10
|
mpdan |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≈ ( { ∅ } × 𝐵 ) ) |
| 12 |
|
entr |
⊢ ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≈ ( { ∅ } × 𝐵 ) ) → ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ) |
| 13 |
5 11 12
|
syl2anc |
⊢ ( 𝐴 ≈ 𝐵 → ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ) |
| 14 |
|
1on |
⊢ 1o ∈ On |
| 15 |
2
|
brrelex1i |
⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ∈ V ) |
| 16 |
|
xpsnen2g |
⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ V ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) |
| 17 |
14 15 16
|
sylancr |
⊢ ( 𝐶 ≈ 𝐷 → ( { 1o } × 𝐶 ) ≈ 𝐶 ) |
| 18 |
2
|
brrelex2i |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ∈ V ) |
| 19 |
|
xpsnen2g |
⊢ ( ( 1o ∈ On ∧ 𝐷 ∈ V ) → ( { 1o } × 𝐷 ) ≈ 𝐷 ) |
| 20 |
14 18 19
|
sylancr |
⊢ ( 𝐶 ≈ 𝐷 → ( { 1o } × 𝐷 ) ≈ 𝐷 ) |
| 21 |
20
|
ensymd |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≈ ( { 1o } × 𝐷 ) ) |
| 22 |
|
entr |
⊢ ( ( 𝐶 ≈ 𝐷 ∧ 𝐷 ≈ ( { 1o } × 𝐷 ) ) → 𝐶 ≈ ( { 1o } × 𝐷 ) ) |
| 23 |
21 22
|
mpdan |
⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ≈ ( { 1o } × 𝐷 ) ) |
| 24 |
|
entr |
⊢ ( ( ( { 1o } × 𝐶 ) ≈ 𝐶 ∧ 𝐶 ≈ ( { 1o } × 𝐷 ) ) → ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) |
| 25 |
17 23 24
|
syl2anc |
⊢ ( 𝐶 ≈ 𝐷 → ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) |
| 26 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ |
| 27 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐷 ) ) = ∅ |
| 28 |
|
unen |
⊢ ( ( ( ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) ∧ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ ∧ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐷 ) ) = ∅ ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≈ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) |
| 29 |
26 27 28
|
mpanr12 |
⊢ ( ( ( { ∅ } × 𝐴 ) ≈ ( { ∅ } × 𝐵 ) ∧ ( { 1o } × 𝐶 ) ≈ ( { 1o } × 𝐷 ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≈ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) |
| 30 |
13 25 29
|
syl2an |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) ≈ ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) |
| 31 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) |
| 32 |
|
df-dju |
⊢ ( 𝐵 ⊔ 𝐷 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) |
| 33 |
30 31 32
|
3brtr4g |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) ≈ ( 𝐵 ⊔ 𝐷 ) ) |