Metamath Proof Explorer


Theorem djuenun

Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 19-Aug-2023)

Ref Expression
Assertion djuenun ABCDBD=A⊔︀CBD

Proof

Step Hyp Ref Expression
1 djuen ABCDA⊔︀CB⊔︀D
2 1 3adant3 ABCDBD=A⊔︀CB⊔︀D
3 relen Rel
4 3 brrelex2i ABBV
5 3 brrelex2i CDDV
6 id BD=BD=
7 endjudisj BVDVBD=B⊔︀DBD
8 4 5 6 7 syl3an ABCDBD=B⊔︀DBD
9 entr A⊔︀CB⊔︀DB⊔︀DBDA⊔︀CBD
10 2 8 9 syl2anc ABCDBD=A⊔︀CBD