| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aleph1re |
|- ( aleph ` 1o ) ~<_ RR |
| 2 |
|
reex |
|- RR e. _V |
| 3 |
|
numth3 |
|- ( RR e. _V -> RR e. dom card ) |
| 4 |
2 3
|
ax-mp |
|- RR e. dom card |
| 5 |
|
nnenom |
|- NN ~~ _om |
| 6 |
5
|
ensymi |
|- _om ~~ NN |
| 7 |
|
ruc |
|- NN ~< RR |
| 8 |
|
ensdomtr |
|- ( ( _om ~~ NN /\ NN ~< RR ) -> _om ~< RR ) |
| 9 |
6 7 8
|
mp2an |
|- _om ~< RR |
| 10 |
|
sdomdom |
|- ( _om ~< RR -> _om ~<_ RR ) |
| 11 |
9 10
|
ax-mp |
|- _om ~<_ RR |
| 12 |
|
resdomq |
|- QQ ~< RR |
| 13 |
|
infdif |
|- ( ( RR e. dom card /\ _om ~<_ RR /\ QQ ~< RR ) -> ( RR \ QQ ) ~~ RR ) |
| 14 |
4 11 12 13
|
mp3an |
|- ( RR \ QQ ) ~~ RR |
| 15 |
14
|
ensymi |
|- RR ~~ ( RR \ QQ ) |
| 16 |
|
domentr |
|- ( ( ( aleph ` 1o ) ~<_ RR /\ RR ~~ ( RR \ QQ ) ) -> ( aleph ` 1o ) ~<_ ( RR \ QQ ) ) |
| 17 |
1 15 16
|
mp2an |
|- ( aleph ` 1o ) ~<_ ( RR \ QQ ) |