Metamath Proof Explorer


Theorem altopeq2

Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion altopeq2 ( 𝐴 = 𝐵 → ⟪ 𝐶 , 𝐴 ⟫ = ⟪ 𝐶 , 𝐵 ⟫ )

Proof

Step Hyp Ref Expression
1 eqid 𝐶 = 𝐶
2 altopeq12 ( ( 𝐶 = 𝐶𝐴 = 𝐵 ) → ⟪ 𝐶 , 𝐴 ⟫ = ⟪ 𝐶 , 𝐵 ⟫ )
3 1 2 mpan ( 𝐴 = 𝐵 → ⟪ 𝐶 , 𝐴 ⟫ = ⟪ 𝐶 , 𝐵 ⟫ )