Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | altopeq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐷 ⟫ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) | |
| 2 | sneq | ⊢ ( 𝐶 = 𝐷 → { 𝐶 } = { 𝐷 } ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( { 𝐴 } = { 𝐵 } ∧ { 𝐶 } = { 𝐷 } ) ) |
| 4 | altopthsn | ⊢ ( ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐷 ⟫ ↔ ( { 𝐴 } = { 𝐵 } ∧ { 𝐶 } = { 𝐷 } ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐷 ⟫ ) |