Metamath Proof Explorer


Theorem altopeq12

Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion altopeq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐷 ⟫ )

Proof

Step Hyp Ref Expression
1 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
2 sneq ( 𝐶 = 𝐷 → { 𝐶 } = { 𝐷 } )
3 1 2 anim12i ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( { 𝐴 } = { 𝐵 } ∧ { 𝐶 } = { 𝐷 } ) )
4 altopthsn ( ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐷 ⟫ ↔ ( { 𝐴 } = { 𝐵 } ∧ { 𝐶 } = { 𝐷 } ) )
5 3 4 sylibr ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐷 ⟫ )