Metamath Proof Explorer


Theorem altopeq1

Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion altopeq1 ( 𝐴 = 𝐵 → ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐶 ⟫ )

Proof

Step Hyp Ref Expression
1 eqid 𝐶 = 𝐶
2 altopeq12 ( ( 𝐴 = 𝐵𝐶 = 𝐶 ) → ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐶 ⟫ )
3 1 2 mpan2 ( 𝐴 = 𝐵 → ⟪ 𝐴 , 𝐶 ⟫ = ⟪ 𝐵 , 𝐶 ⟫ )