Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | altopeq12 | |- ( ( A = B /\ C = D ) -> << A , C >> = << B , D >> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( A = B -> { A } = { B } ) |
|
| 2 | sneq | |- ( C = D -> { C } = { D } ) |
|
| 3 | 1 2 | anim12i | |- ( ( A = B /\ C = D ) -> ( { A } = { B } /\ { C } = { D } ) ) |
| 4 | altopthsn | |- ( << A , C >> = << B , D >> <-> ( { A } = { B } /\ { C } = { D } ) ) |
|
| 5 | 3 4 | sylibr | |- ( ( A = B /\ C = D ) -> << A , C >> = << B , D >> ) |