Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | altopeq12 | |- ( ( A = B /\ C = D ) -> << A , C >> = << B , D >> ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | |- ( A = B -> { A } = { B } ) |
|
2 | sneq | |- ( C = D -> { C } = { D } ) |
|
3 | 1 2 | anim12i | |- ( ( A = B /\ C = D ) -> ( { A } = { B } /\ { C } = { D } ) ) |
4 | altopthsn | |- ( << A , C >> = << B , D >> <-> ( { A } = { B } /\ { C } = { D } ) ) |
|
5 | 3 4 | sylibr | |- ( ( A = B /\ C = D ) -> << A , C >> = << B , D >> ) |