Step |
Hyp |
Ref |
Expression |
1 |
|
df-nan |
⊢ ( ( 𝜃 ⊼ 𝜒 ) ↔ ¬ ( 𝜃 ∧ 𝜒 ) ) |
2 |
|
pm4.57 |
⊢ ( ¬ ( ¬ ( 𝜒 ∧ 𝜃 ) ∧ ¬ ( 𝜑 ∧ 𝜃 ) ) ↔ ( ( 𝜒 ∧ 𝜃 ) ∨ ( 𝜑 ∧ 𝜃 ) ) ) |
3 |
|
orel2 |
⊢ ( ¬ 𝜑 → ( ( 𝜒 ∨ 𝜑 ) → 𝜒 ) ) |
4 |
3
|
com12 |
⊢ ( ( 𝜒 ∨ 𝜑 ) → ( ¬ 𝜑 → 𝜒 ) ) |
5 |
|
simpr |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜒 ) |
6 |
5
|
a1i |
⊢ ( ( 𝜒 ∨ 𝜑 ) → ( ( 𝜓 ∧ 𝜒 ) → 𝜒 ) ) |
7 |
4 6
|
jad |
⊢ ( ( 𝜒 ∨ 𝜑 ) → ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → 𝜒 ) ) |
8 |
7
|
com12 |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜒 ∨ 𝜑 ) → 𝜒 ) ) |
9 |
|
pm3.45 |
⊢ ( ( 𝜒 → 𝜒 ) → ( ( 𝜒 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜃 ) ) ) |
10 |
|
pm3.45 |
⊢ ( ( 𝜑 → 𝜒 ) → ( ( 𝜑 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜃 ) ) ) |
11 |
9 10
|
anim12i |
⊢ ( ( ( 𝜒 → 𝜒 ) ∧ ( 𝜑 → 𝜒 ) ) → ( ( ( 𝜒 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜃 ) ) ∧ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜃 ) ) ) ) |
12 |
|
jaob |
⊢ ( ( ( 𝜒 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜒 → 𝜒 ) ∧ ( 𝜑 → 𝜒 ) ) ) |
13 |
|
jaob |
⊢ ( ( ( ( 𝜒 ∧ 𝜃 ) ∨ ( 𝜑 ∧ 𝜃 ) ) → ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( ( 𝜒 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜃 ) ) ∧ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜃 ) ) ) ) |
14 |
11 12 13
|
3imtr4i |
⊢ ( ( ( 𝜒 ∨ 𝜑 ) → 𝜒 ) → ( ( ( 𝜒 ∧ 𝜃 ) ∨ ( 𝜑 ∧ 𝜃 ) ) → ( 𝜒 ∧ 𝜃 ) ) ) |
15 |
8 14
|
syl |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( ( 𝜒 ∧ 𝜃 ) ∨ ( 𝜑 ∧ 𝜃 ) ) → ( 𝜒 ∧ 𝜃 ) ) ) |
16 |
|
pm3.22 |
⊢ ( ( 𝜒 ∧ 𝜃 ) → ( 𝜃 ∧ 𝜒 ) ) |
17 |
15 16
|
syl6 |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( ( 𝜒 ∧ 𝜃 ) ∨ ( 𝜑 ∧ 𝜃 ) ) → ( 𝜃 ∧ 𝜒 ) ) ) |
18 |
2 17
|
syl5bi |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ¬ ( ¬ ( 𝜒 ∧ 𝜃 ) ∧ ¬ ( 𝜑 ∧ 𝜃 ) ) → ( 𝜃 ∧ 𝜒 ) ) ) |
19 |
18
|
con1d |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ¬ ( 𝜃 ∧ 𝜒 ) → ( ¬ ( 𝜒 ∧ 𝜃 ) ∧ ¬ ( 𝜑 ∧ 𝜃 ) ) ) ) |
20 |
|
df-nan |
⊢ ( ( 𝜒 ⊼ 𝜃 ) ↔ ¬ ( 𝜒 ∧ 𝜃 ) ) |
21 |
20
|
biimpri |
⊢ ( ¬ ( 𝜒 ∧ 𝜃 ) → ( 𝜒 ⊼ 𝜃 ) ) |
22 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜃 ) ↔ ¬ ( 𝜑 ∧ 𝜃 ) ) |
23 |
22
|
biimpri |
⊢ ( ¬ ( 𝜑 ∧ 𝜃 ) → ( 𝜑 ⊼ 𝜃 ) ) |
24 |
21 23
|
anim12i |
⊢ ( ( ¬ ( 𝜒 ∧ 𝜃 ) ∧ ¬ ( 𝜑 ∧ 𝜃 ) ) → ( ( 𝜒 ⊼ 𝜃 ) ∧ ( 𝜑 ⊼ 𝜃 ) ) ) |
25 |
19 24
|
syl6 |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ¬ ( 𝜃 ∧ 𝜒 ) → ( ( 𝜒 ⊼ 𝜃 ) ∧ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
26 |
1 25
|
syl5bi |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜃 ⊼ 𝜒 ) → ( ( 𝜒 ⊼ 𝜃 ) ∧ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
27 |
|
nannan |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) ) |
28 |
|
nannan |
⊢ ( ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜒 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ↔ ( ( 𝜃 ⊼ 𝜒 ) → ( ( 𝜒 ⊼ 𝜃 ) ∧ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
29 |
26 27 28
|
3imtr4i |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜒 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) |
30 |
29
|
ancli |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ∧ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜒 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |
31 |
|
nannan |
⊢ ( ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ⊼ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜒 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ↔ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ∧ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜒 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) ) |
32 |
30 31
|
mpbir |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ⊼ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ⊼ ( ( 𝜃 ⊼ 𝜒 ) ⊼ ( ( 𝜒 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |