| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nan | ⊢ ( ( 𝜃  ⊼  𝜒 )  ↔  ¬  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 2 |  | pm4.57 | ⊢ ( ¬  ( ¬  ( 𝜒  ∧  𝜃 )  ∧  ¬  ( 𝜑  ∧  𝜃 ) )  ↔  ( ( 𝜒  ∧  𝜃 )  ∨  ( 𝜑  ∧  𝜃 ) ) ) | 
						
							| 3 |  | orel2 | ⊢ ( ¬  𝜑  →  ( ( 𝜒  ∨  𝜑 )  →  𝜒 ) ) | 
						
							| 4 | 3 | com12 | ⊢ ( ( 𝜒  ∨  𝜑 )  →  ( ¬  𝜑  →  𝜒 ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜒 ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝜒  ∨  𝜑 )  →  ( ( 𝜓  ∧  𝜒 )  →  𝜒 ) ) | 
						
							| 7 | 4 6 | jad | ⊢ ( ( 𝜒  ∨  𝜑 )  →  ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  𝜒 ) ) | 
						
							| 8 | 7 | com12 | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜒  ∨  𝜑 )  →  𝜒 ) ) | 
						
							| 9 |  | pm3.45 | ⊢ ( ( 𝜒  →  𝜒 )  →  ( ( 𝜒  ∧  𝜃 )  →  ( 𝜒  ∧  𝜃 ) ) ) | 
						
							| 10 |  | pm3.45 | ⊢ ( ( 𝜑  →  𝜒 )  →  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜒  ∧  𝜃 ) ) ) | 
						
							| 11 | 9 10 | anim12i | ⊢ ( ( ( 𝜒  →  𝜒 )  ∧  ( 𝜑  →  𝜒 ) )  →  ( ( ( 𝜒  ∧  𝜃 )  →  ( 𝜒  ∧  𝜃 ) )  ∧  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜒  ∧  𝜃 ) ) ) ) | 
						
							| 12 |  | jaob | ⊢ ( ( ( 𝜒  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜒  →  𝜒 )  ∧  ( 𝜑  →  𝜒 ) ) ) | 
						
							| 13 |  | jaob | ⊢ ( ( ( ( 𝜒  ∧  𝜃 )  ∨  ( 𝜑  ∧  𝜃 ) )  →  ( 𝜒  ∧  𝜃 ) )  ↔  ( ( ( 𝜒  ∧  𝜃 )  →  ( 𝜒  ∧  𝜃 ) )  ∧  ( ( 𝜑  ∧  𝜃 )  →  ( 𝜒  ∧  𝜃 ) ) ) ) | 
						
							| 14 | 11 12 13 | 3imtr4i | ⊢ ( ( ( 𝜒  ∨  𝜑 )  →  𝜒 )  →  ( ( ( 𝜒  ∧  𝜃 )  ∨  ( 𝜑  ∧  𝜃 ) )  →  ( 𝜒  ∧  𝜃 ) ) ) | 
						
							| 15 | 8 14 | syl | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( ( 𝜒  ∧  𝜃 )  ∨  ( 𝜑  ∧  𝜃 ) )  →  ( 𝜒  ∧  𝜃 ) ) ) | 
						
							| 16 |  | pm3.22 | ⊢ ( ( 𝜒  ∧  𝜃 )  →  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 17 | 15 16 | syl6 | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( ( 𝜒  ∧  𝜃 )  ∨  ( 𝜑  ∧  𝜃 ) )  →  ( 𝜃  ∧  𝜒 ) ) ) | 
						
							| 18 | 2 17 | biimtrid | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ¬  ( ¬  ( 𝜒  ∧  𝜃 )  ∧  ¬  ( 𝜑  ∧  𝜃 ) )  →  ( 𝜃  ∧  𝜒 ) ) ) | 
						
							| 19 | 18 | con1d | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ¬  ( 𝜃  ∧  𝜒 )  →  ( ¬  ( 𝜒  ∧  𝜃 )  ∧  ¬  ( 𝜑  ∧  𝜃 ) ) ) ) | 
						
							| 20 |  | df-nan | ⊢ ( ( 𝜒  ⊼  𝜃 )  ↔  ¬  ( 𝜒  ∧  𝜃 ) ) | 
						
							| 21 | 20 | biimpri | ⊢ ( ¬  ( 𝜒  ∧  𝜃 )  →  ( 𝜒  ⊼  𝜃 ) ) | 
						
							| 22 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜃 )  ↔  ¬  ( 𝜑  ∧  𝜃 ) ) | 
						
							| 23 | 22 | biimpri | ⊢ ( ¬  ( 𝜑  ∧  𝜃 )  →  ( 𝜑  ⊼  𝜃 ) ) | 
						
							| 24 | 21 23 | anim12i | ⊢ ( ( ¬  ( 𝜒  ∧  𝜃 )  ∧  ¬  ( 𝜑  ∧  𝜃 ) )  →  ( ( 𝜒  ⊼  𝜃 )  ∧  ( 𝜑  ⊼  𝜃 ) ) ) | 
						
							| 25 | 19 24 | syl6 | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ¬  ( 𝜃  ∧  𝜒 )  →  ( ( 𝜒  ⊼  𝜃 )  ∧  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 26 | 1 25 | biimtrid | ⊢ ( ( 𝜑  →  ( 𝜓  ∧  𝜒 ) )  →  ( ( 𝜃  ⊼  𝜒 )  →  ( ( 𝜒  ⊼  𝜃 )  ∧  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 27 |  | nannan | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ↔  ( 𝜑  →  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 28 |  | nannan | ⊢ ( ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜒  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) )  ↔  ( ( 𝜃  ⊼  𝜒 )  →  ( ( 𝜒  ⊼  𝜃 )  ∧  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 29 | 26 27 28 | 3imtr4i | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜒  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) | 
						
							| 30 | 29 | ancli | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ∧  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜒  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) | 
						
							| 31 |  | nannan | ⊢ ( ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜒  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) )  ↔  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  →  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ∧  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜒  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) ) | 
						
							| 32 | 30 31 | mpbir | ⊢ ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( 𝜑  ⊼  ( 𝜓  ⊼  𝜒 ) )  ⊼  ( ( 𝜃  ⊼  𝜒 )  ⊼  ( ( 𝜒  ⊼  𝜃 )  ⊼  ( 𝜑  ⊼  𝜃 ) ) ) ) ) |