| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nan |
|- ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) |
| 2 |
|
pm4.57 |
|- ( -. ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) <-> ( ( ch /\ th ) \/ ( ph /\ th ) ) ) |
| 3 |
|
orel2 |
|- ( -. ph -> ( ( ch \/ ph ) -> ch ) ) |
| 4 |
3
|
com12 |
|- ( ( ch \/ ph ) -> ( -. ph -> ch ) ) |
| 5 |
|
simpr |
|- ( ( ps /\ ch ) -> ch ) |
| 6 |
5
|
a1i |
|- ( ( ch \/ ph ) -> ( ( ps /\ ch ) -> ch ) ) |
| 7 |
4 6
|
jad |
|- ( ( ch \/ ph ) -> ( ( ph -> ( ps /\ ch ) ) -> ch ) ) |
| 8 |
7
|
com12 |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ( ch \/ ph ) -> ch ) ) |
| 9 |
|
pm3.45 |
|- ( ( ch -> ch ) -> ( ( ch /\ th ) -> ( ch /\ th ) ) ) |
| 10 |
|
pm3.45 |
|- ( ( ph -> ch ) -> ( ( ph /\ th ) -> ( ch /\ th ) ) ) |
| 11 |
9 10
|
anim12i |
|- ( ( ( ch -> ch ) /\ ( ph -> ch ) ) -> ( ( ( ch /\ th ) -> ( ch /\ th ) ) /\ ( ( ph /\ th ) -> ( ch /\ th ) ) ) ) |
| 12 |
|
jaob |
|- ( ( ( ch \/ ph ) -> ch ) <-> ( ( ch -> ch ) /\ ( ph -> ch ) ) ) |
| 13 |
|
jaob |
|- ( ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( ch /\ th ) ) <-> ( ( ( ch /\ th ) -> ( ch /\ th ) ) /\ ( ( ph /\ th ) -> ( ch /\ th ) ) ) ) |
| 14 |
11 12 13
|
3imtr4i |
|- ( ( ( ch \/ ph ) -> ch ) -> ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( ch /\ th ) ) ) |
| 15 |
8 14
|
syl |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( ch /\ th ) ) ) |
| 16 |
|
pm3.22 |
|- ( ( ch /\ th ) -> ( th /\ ch ) ) |
| 17 |
15 16
|
syl6 |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( th /\ ch ) ) ) |
| 18 |
2 17
|
biimtrid |
|- ( ( ph -> ( ps /\ ch ) ) -> ( -. ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) -> ( th /\ ch ) ) ) |
| 19 |
18
|
con1d |
|- ( ( ph -> ( ps /\ ch ) ) -> ( -. ( th /\ ch ) -> ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) ) ) |
| 20 |
|
df-nan |
|- ( ( ch -/\ th ) <-> -. ( ch /\ th ) ) |
| 21 |
20
|
biimpri |
|- ( -. ( ch /\ th ) -> ( ch -/\ th ) ) |
| 22 |
|
df-nan |
|- ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) |
| 23 |
22
|
biimpri |
|- ( -. ( ph /\ th ) -> ( ph -/\ th ) ) |
| 24 |
21 23
|
anim12i |
|- ( ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) |
| 25 |
19 24
|
syl6 |
|- ( ( ph -> ( ps /\ ch ) ) -> ( -. ( th /\ ch ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) ) |
| 26 |
1 25
|
biimtrid |
|- ( ( ph -> ( ps /\ ch ) ) -> ( ( th -/\ ch ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) ) |
| 27 |
|
nannan |
|- ( ( ph -/\ ( ps -/\ ch ) ) <-> ( ph -> ( ps /\ ch ) ) ) |
| 28 |
|
nannan |
|- ( ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) <-> ( ( th -/\ ch ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) ) |
| 29 |
26 27 28
|
3imtr4i |
|- ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) |
| 30 |
29
|
ancli |
|- ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ps -/\ ch ) ) /\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |
| 31 |
|
nannan |
|- ( ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ps -/\ ch ) ) /\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) |
| 32 |
30 31
|
mpbir |
|- ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |