| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nan |  |-  ( ( th -/\ ch ) <-> -. ( th /\ ch ) ) | 
						
							| 2 |  | pm4.57 |  |-  ( -. ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) <-> ( ( ch /\ th ) \/ ( ph /\ th ) ) ) | 
						
							| 3 |  | orel2 |  |-  ( -. ph -> ( ( ch \/ ph ) -> ch ) ) | 
						
							| 4 | 3 | com12 |  |-  ( ( ch \/ ph ) -> ( -. ph -> ch ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ps /\ ch ) -> ch ) | 
						
							| 6 | 5 | a1i |  |-  ( ( ch \/ ph ) -> ( ( ps /\ ch ) -> ch ) ) | 
						
							| 7 | 4 6 | jad |  |-  ( ( ch \/ ph ) -> ( ( ph -> ( ps /\ ch ) ) -> ch ) ) | 
						
							| 8 | 7 | com12 |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ch \/ ph ) -> ch ) ) | 
						
							| 9 |  | pm3.45 |  |-  ( ( ch -> ch ) -> ( ( ch /\ th ) -> ( ch /\ th ) ) ) | 
						
							| 10 |  | pm3.45 |  |-  ( ( ph -> ch ) -> ( ( ph /\ th ) -> ( ch /\ th ) ) ) | 
						
							| 11 | 9 10 | anim12i |  |-  ( ( ( ch -> ch ) /\ ( ph -> ch ) ) -> ( ( ( ch /\ th ) -> ( ch /\ th ) ) /\ ( ( ph /\ th ) -> ( ch /\ th ) ) ) ) | 
						
							| 12 |  | jaob |  |-  ( ( ( ch \/ ph ) -> ch ) <-> ( ( ch -> ch ) /\ ( ph -> ch ) ) ) | 
						
							| 13 |  | jaob |  |-  ( ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( ch /\ th ) ) <-> ( ( ( ch /\ th ) -> ( ch /\ th ) ) /\ ( ( ph /\ th ) -> ( ch /\ th ) ) ) ) | 
						
							| 14 | 11 12 13 | 3imtr4i |  |-  ( ( ( ch \/ ph ) -> ch ) -> ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( ch /\ th ) ) ) | 
						
							| 15 | 8 14 | syl |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( ch /\ th ) ) ) | 
						
							| 16 |  | pm3.22 |  |-  ( ( ch /\ th ) -> ( th /\ ch ) ) | 
						
							| 17 | 15 16 | syl6 |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ( ch /\ th ) \/ ( ph /\ th ) ) -> ( th /\ ch ) ) ) | 
						
							| 18 | 2 17 | biimtrid |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( -. ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) -> ( th /\ ch ) ) ) | 
						
							| 19 | 18 | con1d |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( -. ( th /\ ch ) -> ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) ) ) | 
						
							| 20 |  | df-nan |  |-  ( ( ch -/\ th ) <-> -. ( ch /\ th ) ) | 
						
							| 21 | 20 | biimpri |  |-  ( -. ( ch /\ th ) -> ( ch -/\ th ) ) | 
						
							| 22 |  | df-nan |  |-  ( ( ph -/\ th ) <-> -. ( ph /\ th ) ) | 
						
							| 23 | 22 | biimpri |  |-  ( -. ( ph /\ th ) -> ( ph -/\ th ) ) | 
						
							| 24 | 21 23 | anim12i |  |-  ( ( -. ( ch /\ th ) /\ -. ( ph /\ th ) ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) | 
						
							| 25 | 19 24 | syl6 |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( -. ( th /\ ch ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) ) | 
						
							| 26 | 1 25 | biimtrid |  |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( th -/\ ch ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) ) | 
						
							| 27 |  | nannan |  |-  ( ( ph -/\ ( ps -/\ ch ) ) <-> ( ph -> ( ps /\ ch ) ) ) | 
						
							| 28 |  | nannan |  |-  ( ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) <-> ( ( th -/\ ch ) -> ( ( ch -/\ th ) /\ ( ph -/\ th ) ) ) ) | 
						
							| 29 | 26 27 28 | 3imtr4i |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) | 
						
							| 30 | 29 | ancli |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ps -/\ ch ) ) /\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) | 
						
							| 31 |  | nannan |  |-  ( ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) <-> ( ( ph -/\ ( ps -/\ ch ) ) -> ( ( ph -/\ ( ps -/\ ch ) ) /\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) ) | 
						
							| 32 | 30 31 | mpbir |  |-  ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( ph -/\ ( ps -/\ ch ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ch -/\ th ) -/\ ( ph -/\ th ) ) ) ) ) |