Metamath Proof Explorer


Theorem arwdm

Description: The domain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
arwdm.b 𝐵 = ( Base ‘ 𝐶 )
Assertion arwdm ( 𝐹𝐴 → ( doma𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
2 arwdm.b 𝐵 = ( Base ‘ 𝐶 )
3 eqid ( Homa𝐶 ) = ( Homa𝐶 )
4 1 3 arwhoma ( 𝐹𝐴𝐹 ∈ ( ( doma𝐹 ) ( Homa𝐶 ) ( coda𝐹 ) ) )
5 3 2 homarcl2 ( 𝐹 ∈ ( ( doma𝐹 ) ( Homa𝐶 ) ( coda𝐹 ) ) → ( ( doma𝐹 ) ∈ 𝐵 ∧ ( coda𝐹 ) ∈ 𝐵 ) )
6 4 5 syl ( 𝐹𝐴 → ( ( doma𝐹 ) ∈ 𝐵 ∧ ( coda𝐹 ) ∈ 𝐵 ) )
7 6 simpld ( 𝐹𝐴 → ( doma𝐹 ) ∈ 𝐵 )