Metamath Proof Explorer
		
		
		
		Description:  The scalar 1 embedded into an associative algebra corresponds to the 1
       of the an associative algebra.  (Contributed by AV, 31-Jul-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | assaascl0.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
					
						|  |  | assaascl0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
					
						|  |  | assaascl0.w | ⊢ ( 𝜑  →  𝑊  ∈  AssAlg ) | 
				
					|  | Assertion | assaascl1 | ⊢  ( 𝜑  →  ( 𝐴 ‘ ( 1r ‘ 𝐹 ) )  =  ( 1r ‘ 𝑊 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | assaascl0.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | assaascl0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | assaascl0.w | ⊢ ( 𝜑  →  𝑊  ∈  AssAlg ) | 
						
							| 4 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 6 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Ring ) | 
						
							| 8 | 1 2 5 7 | ascl1 | ⊢ ( 𝜑  →  ( 𝐴 ‘ ( 1r ‘ 𝐹 ) )  =  ( 1r ‘ 𝑊 ) ) |