Metamath Proof Explorer


Theorem assaascl1

Description: The scalar 1 embedded into an associative algebra corresponds to the 1 of the an associative algebra. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses assaascl0.a A=algScW
assaascl0.f F=ScalarW
assaascl0.w φWAssAlg
Assertion assaascl1 φA1F=1W

Proof

Step Hyp Ref Expression
1 assaascl0.a A=algScW
2 assaascl0.f F=ScalarW
3 assaascl0.w φWAssAlg
4 assalmod WAssAlgWLMod
5 3 4 syl φWLMod
6 assaring WAssAlgWRing
7 3 6 syl φWRing
8 1 2 5 7 ascl1 φA1F=1W