Metamath Proof Explorer


Theorem assaascl1

Description: The scalar 1 embedded into an associative algebra corresponds to the 1 of the an associative algebra. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses assaascl0.a A = algSc W
assaascl0.f F = Scalar W
assaascl0.w φ W AssAlg
Assertion assaascl1 φ A 1 F = 1 W

Proof

Step Hyp Ref Expression
1 assaascl0.a A = algSc W
2 assaascl0.f F = Scalar W
3 assaascl0.w φ W AssAlg
4 assalmod W AssAlg W LMod
5 3 4 syl φ W LMod
6 assaring W AssAlg W Ring
7 3 6 syl φ W Ring
8 1 2 5 7 ascl1 φ A 1 F = 1 W