Metamath Proof Explorer


Theorem ascl1

Description: The scalar 1 embedded into a left module corresponds to the 1 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses ascl0.a A=algScW
ascl0.f F=ScalarW
ascl0.l φWLMod
ascl0.r φWRing
Assertion ascl1 φA1F=1W

Proof

Step Hyp Ref Expression
1 ascl0.a A=algScW
2 ascl0.f F=ScalarW
3 ascl0.l φWLMod
4 ascl0.r φWRing
5 2 lmodring WLModFRing
6 3 5 syl φFRing
7 eqid BaseF=BaseF
8 eqid 1F=1F
9 7 8 ringidcl FRing1FBaseF
10 6 9 syl φ1FBaseF
11 eqid W=W
12 eqid 1W=1W
13 1 2 7 11 12 asclval 1FBaseFA1F=1FW1W
14 10 13 syl φA1F=1FW1W
15 eqid BaseW=BaseW
16 15 12 ringidcl WRing1WBaseW
17 4 16 syl φ1WBaseW
18 15 2 11 8 lmodvs1 WLMod1WBaseW1FW1W=1W
19 3 17 18 syl2anc φ1FW1W=1W
20 14 19 eqtrd φA1F=1W