Metamath Proof Explorer


Theorem asclmul1

Description: Left multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses asclmul1.a A=algScW
asclmul1.f F=ScalarW
asclmul1.k K=BaseF
asclmul1.v V=BaseW
asclmul1.t ×˙=W
asclmul1.s ·˙=W
Assertion asclmul1 WAssAlgRKXVAR×˙X=R·˙X

Proof

Step Hyp Ref Expression
1 asclmul1.a A=algScW
2 asclmul1.f F=ScalarW
3 asclmul1.k K=BaseF
4 asclmul1.v V=BaseW
5 asclmul1.t ×˙=W
6 asclmul1.s ·˙=W
7 eqid 1W=1W
8 1 2 3 6 7 asclval RKAR=R·˙1W
9 8 3ad2ant2 WAssAlgRKXVAR=R·˙1W
10 9 oveq1d WAssAlgRKXVAR×˙X=R·˙1W×˙X
11 simp1 WAssAlgRKXVWAssAlg
12 simp2 WAssAlgRKXVRK
13 assaring WAssAlgWRing
14 13 3ad2ant1 WAssAlgRKXVWRing
15 4 7 ringidcl WRing1WV
16 14 15 syl WAssAlgRKXV1WV
17 simp3 WAssAlgRKXVXV
18 4 2 3 6 5 assaass WAssAlgRK1WVXVR·˙1W×˙X=R·˙1W×˙X
19 11 12 16 17 18 syl13anc WAssAlgRKXVR·˙1W×˙X=R·˙1W×˙X
20 4 5 7 ringlidm WRingXV1W×˙X=X
21 14 17 20 syl2anc WAssAlgRKXV1W×˙X=X
22 21 oveq2d WAssAlgRKXVR·˙1W×˙X=R·˙X
23 10 19 22 3eqtrd WAssAlgRKXVAR×˙X=R·˙X