Metamath Proof Explorer


Theorem asslawass

Description: Associativity of an associative operation. (Contributed by FL, 2-Nov-2009) (Revised by AV, 21-Jan-2020)

Ref Expression
Assertion asslawass ( assLaw 𝑀 → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 df-asslaw assLaw = { ⟨ 𝑜 , 𝑚 ⟩ ∣ ∀ 𝑥𝑚𝑦𝑚𝑧𝑚 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) }
2 1 bropaex12 ( assLaw 𝑀 → ( ∈ V ∧ 𝑀 ∈ V ) )
3 isasslaw ( ( ∈ V ∧ 𝑀 ∈ V ) → ( assLaw 𝑀 ↔ ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) ) )
4 2 3 syl ( assLaw 𝑀 → ( assLaw 𝑀 ↔ ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) ) )
5 4 ibi ( assLaw 𝑀 → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) )