Description: Associativity of an associative operation. (Contributed by FL, 2-Nov-2009) (Revised by AV, 21-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asslawass | ⊢ ( ⚬ assLaw 𝑀 → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-asslaw | ⊢ assLaw = { 〈 𝑜 , 𝑚 〉 ∣ ∀ 𝑥 ∈ 𝑚 ∀ 𝑦 ∈ 𝑚 ∀ 𝑧 ∈ 𝑚 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) } | |
| 2 | 1 | bropaex12 | ⊢ ( ⚬ assLaw 𝑀 → ( ⚬ ∈ V ∧ 𝑀 ∈ V ) ) |
| 3 | isasslaw | ⊢ ( ( ⚬ ∈ V ∧ 𝑀 ∈ V ) → ( ⚬ assLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ⚬ assLaw 𝑀 → ( ⚬ assLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 5 | 4 | ibi | ⊢ ( ⚬ assLaw 𝑀 → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |