Metamath Proof Explorer


Theorem mgmplusgiopALT

Description: Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion mgmplusgiopALT ( 𝑀 ∈ Mgm → ( +g𝑀 ) clLaw ( Base ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
2 eqid ( +g𝑀 ) = ( +g𝑀 )
3 1 2 mgmcl ( ( 𝑀 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) )
4 3 3expb ( ( 𝑀 ∈ Mgm ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) )
5 4 ralrimivva ( 𝑀 ∈ Mgm → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) )
6 fvex ( +g𝑀 ) ∈ V
7 fvex ( Base ‘ 𝑀 ) ∈ V
8 6 7 pm3.2i ( ( +g𝑀 ) ∈ V ∧ ( Base ‘ 𝑀 ) ∈ V )
9 iscllaw ( ( ( +g𝑀 ) ∈ V ∧ ( Base ‘ 𝑀 ) ∈ V ) → ( ( +g𝑀 ) clLaw ( Base ‘ 𝑀 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) )
10 8 9 mp1i ( 𝑀 ∈ Mgm → ( ( +g𝑀 ) clLaw ( Base ‘ 𝑀 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) )
11 5 10 mpbird ( 𝑀 ∈ Mgm → ( +g𝑀 ) clLaw ( Base ‘ 𝑀 ) )