Metamath Proof Explorer


Theorem sgrpplusgaopALT

Description: Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sgrpplusgaopALT ( 𝐺 ∈ Smgrp → ( +g𝐺 ) assLaw ( Base ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐺 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( +g𝐺 ) 𝑧 ) = ( 𝑥 ( +g𝐺 ) ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( +g𝐺 ) 𝑧 ) = ( 𝑥 ( +g𝐺 ) ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 2 3 issgrp ( 𝐺 ∈ Smgrp ↔ ( 𝐺 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( +g𝐺 ) 𝑧 ) = ( 𝑥 ( +g𝐺 ) ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) )
5 fvex ( +g𝐺 ) ∈ V
6 fvex ( Base ‘ 𝐺 ) ∈ V
7 isasslaw ( ( ( +g𝐺 ) ∈ V ∧ ( Base ‘ 𝐺 ) ∈ V ) → ( ( +g𝐺 ) assLaw ( Base ‘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( +g𝐺 ) 𝑧 ) = ( 𝑥 ( +g𝐺 ) ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) )
8 5 6 7 mp2an ( ( +g𝐺 ) assLaw ( Base ‘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ( +g𝐺 ) 𝑧 ) = ( 𝑥 ( +g𝐺 ) ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
9 1 4 8 3imtr4i ( 𝐺 ∈ Smgrp → ( +g𝐺 ) assLaw ( Base ‘ 𝐺 ) )