Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Goldbach's conjectures
ax-bgbltosilva
Metamath Proof Explorer
Description: The binary Goldbach conjecture is valid for all even numbers less than or
equal to 4x10^18, see section 2 in OeSilva p. 2042. Temporarily
provided as "axiom". (Contributed by AV , 3-Aug-2020) (Revised by AV , 9-Sep-2021)
Ref
Expression
Assertion
ax-bgbltosilva
⊢ ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑁 ∈ GoldbachEven )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cN
⊢ 𝑁
1
ceven
⊢ Even
2
0 1
wcel
⊢ 𝑁 ∈ Even
3
c4
⊢ 4
4
clt
⊢ <
5
3 0 4
wbr
⊢ 4 < 𝑁
6
cle
⊢ ≤
7
cmul
⊢ ·
8
c1
⊢ 1
9
cc0
⊢ 0
10
8 9
cdc
⊢ ; 1 0
11
cexp
⊢ ↑
12
c8
⊢ 8
13
8 12
cdc
⊢ ; 1 8
14
10 13 11
co
⊢ ( ; 1 0 ↑ ; 1 8 )
15
3 14 7
co
⊢ ( 4 · ( ; 1 0 ↑ ; 1 8 ) )
16
0 15 6
wbr
⊢ 𝑁 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) )
17
2 5 16
w3a
⊢ ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) )
18
cgbe
⊢ GoldbachEven
19
0 18
wcel
⊢ 𝑁 ∈ GoldbachEven
20
17 19
wi
⊢ ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑁 ∈ GoldbachEven )