Metamath Proof Explorer


Axiom ax-hgprmladder

Description: There is a partition ("ladder") of primes from 7 to 8.8 x 10^30 with parts ("rungs") having lengths of at least 4 and at most N - 4, see section 1.2.2 in Helfgott p. 4. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion ax-hgprmladder 𝑑 ∈ ( ℤ ‘ 3 ) ∃ 𝑓 ∈ ( RePart ‘ 𝑑 ) ( ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = 1 3 ∧ ( 𝑓𝑑 ) = ( 8 9 · ( 1 0 ↑ 2 9 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) < ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vd 𝑑
1 cuz
2 c3 3
3 2 1 cfv ( ℤ ‘ 3 )
4 vf 𝑓
5 ciccp RePart
6 0 cv 𝑑
7 6 5 cfv ( RePart ‘ 𝑑 )
8 4 cv 𝑓
9 cc0 0
10 9 8 cfv ( 𝑓 ‘ 0 )
11 c7 7
12 10 11 wceq ( 𝑓 ‘ 0 ) = 7
13 c1 1
14 13 8 cfv ( 𝑓 ‘ 1 )
15 13 2 cdc 1 3
16 14 15 wceq ( 𝑓 ‘ 1 ) = 1 3
17 6 8 cfv ( 𝑓𝑑 )
18 c8 8
19 c9 9
20 18 19 cdc 8 9
21 cmul ·
22 13 9 cdc 1 0
23 cexp
24 c2 2
25 24 19 cdc 2 9
26 22 25 23 co ( 1 0 ↑ 2 9 )
27 20 26 21 co ( 8 9 · ( 1 0 ↑ 2 9 ) )
28 17 27 wceq ( 𝑓𝑑 ) = ( 8 9 · ( 1 0 ↑ 2 9 ) )
29 12 16 28 w3a ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = 1 3 ∧ ( 𝑓𝑑 ) = ( 8 9 · ( 1 0 ↑ 2 9 ) ) )
30 vi 𝑖
31 cfzo ..^
32 9 6 31 co ( 0 ..^ 𝑑 )
33 30 cv 𝑖
34 33 8 cfv ( 𝑓𝑖 )
35 cprime
36 24 csn { 2 }
37 35 36 cdif ( ℙ ∖ { 2 } )
38 34 37 wcel ( 𝑓𝑖 ) ∈ ( ℙ ∖ { 2 } )
39 caddc +
40 33 13 39 co ( 𝑖 + 1 )
41 40 8 cfv ( 𝑓 ‘ ( 𝑖 + 1 ) )
42 cmin
43 41 34 42 co ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) )
44 clt <
45 c4 4
46 13 18 cdc 1 8
47 22 46 23 co ( 1 0 ↑ 1 8 )
48 45 47 21 co ( 4 · ( 1 0 ↑ 1 8 ) )
49 48 45 42 co ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 )
50 43 49 44 wbr ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) < ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 )
51 45 43 44 wbr 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) )
52 38 50 51 w3a ( ( 𝑓𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) < ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) )
53 52 30 32 wral 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) < ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) )
54 29 53 wa ( ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = 1 3 ∧ ( 𝑓𝑑 ) = ( 8 9 · ( 1 0 ↑ 2 9 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) < ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) ) )
55 54 4 7 wrex 𝑓 ∈ ( RePart ‘ 𝑑 ) ( ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = 1 3 ∧ ( 𝑓𝑑 ) = ( 8 9 · ( 1 0 ↑ 2 9 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) < ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) ) )
56 55 0 3 wrex 𝑑 ∈ ( ℤ ‘ 3 ) ∃ 𝑓 ∈ ( RePart ‘ 𝑑 ) ( ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = 1 3 ∧ ( 𝑓𝑑 ) = ( 8 9 · ( 1 0 ↑ 2 9 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) < ( ( 4 · ( 1 0 ↑ 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓𝑖 ) ) ) )