| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vd |
⊢ 𝑑 |
| 1 |
|
cuz |
⊢ ℤ≥ |
| 2 |
|
c3 |
⊢ 3 |
| 3 |
2 1
|
cfv |
⊢ ( ℤ≥ ‘ 3 ) |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
ciccp |
⊢ RePart |
| 6 |
0
|
cv |
⊢ 𝑑 |
| 7 |
6 5
|
cfv |
⊢ ( RePart ‘ 𝑑 ) |
| 8 |
4
|
cv |
⊢ 𝑓 |
| 9 |
|
cc0 |
⊢ 0 |
| 10 |
9 8
|
cfv |
⊢ ( 𝑓 ‘ 0 ) |
| 11 |
|
c7 |
⊢ 7 |
| 12 |
10 11
|
wceq |
⊢ ( 𝑓 ‘ 0 ) = 7 |
| 13 |
|
c1 |
⊢ 1 |
| 14 |
13 8
|
cfv |
⊢ ( 𝑓 ‘ 1 ) |
| 15 |
13 2
|
cdc |
⊢ ; 1 3 |
| 16 |
14 15
|
wceq |
⊢ ( 𝑓 ‘ 1 ) = ; 1 3 |
| 17 |
6 8
|
cfv |
⊢ ( 𝑓 ‘ 𝑑 ) |
| 18 |
|
c8 |
⊢ 8 |
| 19 |
|
c9 |
⊢ 9 |
| 20 |
18 19
|
cdc |
⊢ ; 8 9 |
| 21 |
|
cmul |
⊢ · |
| 22 |
13 9
|
cdc |
⊢ ; 1 0 |
| 23 |
|
cexp |
⊢ ↑ |
| 24 |
|
c2 |
⊢ 2 |
| 25 |
24 19
|
cdc |
⊢ ; 2 9 |
| 26 |
22 25 23
|
co |
⊢ ( ; 1 0 ↑ ; 2 9 ) |
| 27 |
20 26 21
|
co |
⊢ ( ; 8 9 · ( ; 1 0 ↑ ; 2 9 ) ) |
| 28 |
17 27
|
wceq |
⊢ ( 𝑓 ‘ 𝑑 ) = ( ; 8 9 · ( ; 1 0 ↑ ; 2 9 ) ) |
| 29 |
12 16 28
|
w3a |
⊢ ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = ; 1 3 ∧ ( 𝑓 ‘ 𝑑 ) = ( ; 8 9 · ( ; 1 0 ↑ ; 2 9 ) ) ) |
| 30 |
|
vi |
⊢ 𝑖 |
| 31 |
|
cfzo |
⊢ ..^ |
| 32 |
9 6 31
|
co |
⊢ ( 0 ..^ 𝑑 ) |
| 33 |
30
|
cv |
⊢ 𝑖 |
| 34 |
33 8
|
cfv |
⊢ ( 𝑓 ‘ 𝑖 ) |
| 35 |
|
cprime |
⊢ ℙ |
| 36 |
24
|
csn |
⊢ { 2 } |
| 37 |
35 36
|
cdif |
⊢ ( ℙ ∖ { 2 } ) |
| 38 |
34 37
|
wcel |
⊢ ( 𝑓 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) |
| 39 |
|
caddc |
⊢ + |
| 40 |
33 13 39
|
co |
⊢ ( 𝑖 + 1 ) |
| 41 |
40 8
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑖 + 1 ) ) |
| 42 |
|
cmin |
⊢ − |
| 43 |
41 34 42
|
co |
⊢ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) |
| 44 |
|
clt |
⊢ < |
| 45 |
|
c4 |
⊢ 4 |
| 46 |
13 18
|
cdc |
⊢ ; 1 8 |
| 47 |
22 46 23
|
co |
⊢ ( ; 1 0 ↑ ; 1 8 ) |
| 48 |
45 47 21
|
co |
⊢ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) |
| 49 |
48 45 42
|
co |
⊢ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) − 4 ) |
| 50 |
43 49 44
|
wbr |
⊢ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) < ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) − 4 ) |
| 51 |
45 43 44
|
wbr |
⊢ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) |
| 52 |
38 50 51
|
w3a |
⊢ ( ( 𝑓 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) < ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) ) |
| 53 |
52 30 32
|
wral |
⊢ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) < ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) ) |
| 54 |
29 53
|
wa |
⊢ ( ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = ; 1 3 ∧ ( 𝑓 ‘ 𝑑 ) = ( ; 8 9 · ( ; 1 0 ↑ ; 2 9 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) < ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 55 |
54 4 7
|
wrex |
⊢ ∃ 𝑓 ∈ ( RePart ‘ 𝑑 ) ( ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = ; 1 3 ∧ ( 𝑓 ‘ 𝑑 ) = ( ; 8 9 · ( ; 1 0 ↑ ; 2 9 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) < ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 56 |
55 0 3
|
wrex |
⊢ ∃ 𝑑 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑓 ∈ ( RePart ‘ 𝑑 ) ( ( ( 𝑓 ‘ 0 ) = 7 ∧ ( 𝑓 ‘ 1 ) = ; 1 3 ∧ ( 𝑓 ‘ 𝑑 ) = ( ; 8 9 · ( ; 1 0 ↑ ; 2 9 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑑 ) ( ( 𝑓 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) < ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) − 4 ) ∧ 4 < ( ( 𝑓 ‘ ( 𝑖 + 1 ) ) − ( 𝑓 ‘ 𝑖 ) ) ) ) |