Step |
Hyp |
Ref |
Expression |
0 |
|
vd |
โข ๐ |
1 |
|
cuz |
โข โคโฅ |
2 |
|
c3 |
โข 3 |
3 |
2 1
|
cfv |
โข ( โคโฅ โ 3 ) |
4 |
|
vf |
โข ๐ |
5 |
|
ciccp |
โข RePart |
6 |
0
|
cv |
โข ๐ |
7 |
6 5
|
cfv |
โข ( RePart โ ๐ ) |
8 |
4
|
cv |
โข ๐ |
9 |
|
cc0 |
โข 0 |
10 |
9 8
|
cfv |
โข ( ๐ โ 0 ) |
11 |
|
c7 |
โข 7 |
12 |
10 11
|
wceq |
โข ( ๐ โ 0 ) = 7 |
13 |
|
c1 |
โข 1 |
14 |
13 8
|
cfv |
โข ( ๐ โ 1 ) |
15 |
13 2
|
cdc |
โข ; 1 3 |
16 |
14 15
|
wceq |
โข ( ๐ โ 1 ) = ; 1 3 |
17 |
6 8
|
cfv |
โข ( ๐ โ ๐ ) |
18 |
|
c8 |
โข 8 |
19 |
|
c9 |
โข 9 |
20 |
18 19
|
cdc |
โข ; 8 9 |
21 |
|
cmul |
โข ยท |
22 |
13 9
|
cdc |
โข ; 1 0 |
23 |
|
cexp |
โข โ |
24 |
|
c2 |
โข 2 |
25 |
24 19
|
cdc |
โข ; 2 9 |
26 |
22 25 23
|
co |
โข ( ; 1 0 โ ; 2 9 ) |
27 |
20 26 21
|
co |
โข ( ; 8 9 ยท ( ; 1 0 โ ; 2 9 ) ) |
28 |
17 27
|
wceq |
โข ( ๐ โ ๐ ) = ( ; 8 9 ยท ( ; 1 0 โ ; 2 9 ) ) |
29 |
12 16 28
|
w3a |
โข ( ( ๐ โ 0 ) = 7 โง ( ๐ โ 1 ) = ; 1 3 โง ( ๐ โ ๐ ) = ( ; 8 9 ยท ( ; 1 0 โ ; 2 9 ) ) ) |
30 |
|
vi |
โข ๐ |
31 |
|
cfzo |
โข ..^ |
32 |
9 6 31
|
co |
โข ( 0 ..^ ๐ ) |
33 |
30
|
cv |
โข ๐ |
34 |
33 8
|
cfv |
โข ( ๐ โ ๐ ) |
35 |
|
cprime |
โข โ |
36 |
24
|
csn |
โข { 2 } |
37 |
35 36
|
cdif |
โข ( โ โ { 2 } ) |
38 |
34 37
|
wcel |
โข ( ๐ โ ๐ ) โ ( โ โ { 2 } ) |
39 |
|
caddc |
โข + |
40 |
33 13 39
|
co |
โข ( ๐ + 1 ) |
41 |
40 8
|
cfv |
โข ( ๐ โ ( ๐ + 1 ) ) |
42 |
|
cmin |
โข โ |
43 |
41 34 42
|
co |
โข ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) |
44 |
|
clt |
โข < |
45 |
|
c4 |
โข 4 |
46 |
13 18
|
cdc |
โข ; 1 8 |
47 |
22 46 23
|
co |
โข ( ; 1 0 โ ; 1 8 ) |
48 |
45 47 21
|
co |
โข ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) |
49 |
48 45 42
|
co |
โข ( ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) โ 4 ) |
50 |
43 49 44
|
wbr |
โข ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) < ( ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) โ 4 ) |
51 |
45 43 44
|
wbr |
โข 4 < ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) |
52 |
38 50 51
|
w3a |
โข ( ( ๐ โ ๐ ) โ ( โ โ { 2 } ) โง ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) < ( ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) โ 4 ) โง 4 < ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) ) |
53 |
52 30 32
|
wral |
โข โ ๐ โ ( 0 ..^ ๐ ) ( ( ๐ โ ๐ ) โ ( โ โ { 2 } ) โง ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) < ( ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) โ 4 ) โง 4 < ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) ) |
54 |
29 53
|
wa |
โข ( ( ( ๐ โ 0 ) = 7 โง ( ๐ โ 1 ) = ; 1 3 โง ( ๐ โ ๐ ) = ( ; 8 9 ยท ( ; 1 0 โ ; 2 9 ) ) ) โง โ ๐ โ ( 0 ..^ ๐ ) ( ( ๐ โ ๐ ) โ ( โ โ { 2 } ) โง ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) < ( ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) โ 4 ) โง 4 < ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) ) ) |
55 |
54 4 7
|
wrex |
โข โ ๐ โ ( RePart โ ๐ ) ( ( ( ๐ โ 0 ) = 7 โง ( ๐ โ 1 ) = ; 1 3 โง ( ๐ โ ๐ ) = ( ; 8 9 ยท ( ; 1 0 โ ; 2 9 ) ) ) โง โ ๐ โ ( 0 ..^ ๐ ) ( ( ๐ โ ๐ ) โ ( โ โ { 2 } ) โง ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) < ( ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) โ 4 ) โง 4 < ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) ) ) |
56 |
55 0 3
|
wrex |
โข โ ๐ โ ( โคโฅ โ 3 ) โ ๐ โ ( RePart โ ๐ ) ( ( ( ๐ โ 0 ) = 7 โง ( ๐ โ 1 ) = ; 1 3 โง ( ๐ โ ๐ ) = ( ; 8 9 ยท ( ; 1 0 โ ; 2 9 ) ) ) โง โ ๐ โ ( 0 ..^ ๐ ) ( ( ๐ โ ๐ ) โ ( โ โ { 2 } ) โง ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) < ( ( 4 ยท ( ; 1 0 โ ; 1 8 ) ) โ 4 ) โง 4 < ( ( ๐ โ ( ๐ + 1 ) ) โ ( ๐ โ ๐ ) ) ) ) |