| Step | Hyp | Ref | Expression | 
						
							| 0 |  | vn | ⊢ 𝑛 | 
						
							| 1 |  | vz | ⊢ 𝑧 | 
						
							| 2 |  | cz | ⊢ ℤ | 
						
							| 3 |  | c2 | ⊢ 2 | 
						
							| 4 |  | cdvds | ⊢  ∥ | 
						
							| 5 | 1 | cv | ⊢ 𝑧 | 
						
							| 6 | 3 5 4 | wbr | ⊢ 2  ∥  𝑧 | 
						
							| 7 | 6 | wn | ⊢ ¬  2  ∥  𝑧 | 
						
							| 8 | 7 1 2 | crab | ⊢ { 𝑧  ∈  ℤ  ∣  ¬  2  ∥  𝑧 } | 
						
							| 9 |  | c1 | ⊢ 1 | 
						
							| 10 |  | cc0 | ⊢ 0 | 
						
							| 11 | 9 10 | cdc | ⊢ ; 1 0 | 
						
							| 12 |  | cexp | ⊢ ↑ | 
						
							| 13 |  | c7 | ⊢ 7 | 
						
							| 14 | 3 13 | cdc | ⊢ ; 2 7 | 
						
							| 15 | 11 14 12 | co | ⊢ ( ; 1 0 ↑ ; 2 7 ) | 
						
							| 16 |  | cle | ⊢  ≤ | 
						
							| 17 | 0 | cv | ⊢ 𝑛 | 
						
							| 18 | 15 17 16 | wbr | ⊢ ( ; 1 0 ↑ ; 2 7 )  ≤  𝑛 | 
						
							| 19 |  | vh | ⊢ ℎ | 
						
							| 20 |  | cico | ⊢ [,) | 
						
							| 21 |  | cpnf | ⊢ +∞ | 
						
							| 22 | 10 21 20 | co | ⊢ ( 0 [,) +∞ ) | 
						
							| 23 |  | cmap | ⊢  ↑m | 
						
							| 24 |  | cn | ⊢ ℕ | 
						
							| 25 | 22 24 23 | co | ⊢ ( ( 0 [,) +∞ )  ↑m  ℕ ) | 
						
							| 26 |  | vk | ⊢ 𝑘 | 
						
							| 27 |  | vm | ⊢ 𝑚 | 
						
							| 28 | 26 | cv | ⊢ 𝑘 | 
						
							| 29 | 27 | cv | ⊢ 𝑚 | 
						
							| 30 | 29 28 | cfv | ⊢ ( 𝑘 ‘ 𝑚 ) | 
						
							| 31 |  | cdp | ⊢ . | 
						
							| 32 |  | c9 | ⊢ 9 | 
						
							| 33 |  | c5 | ⊢ 5 | 
						
							| 34 | 33 33 | cdp2 | ⊢ _ 5 5 | 
						
							| 35 | 32 34 | cdp2 | ⊢ _ 9 _ 5 5 | 
						
							| 36 | 32 35 | cdp2 | ⊢ _ 9 _ 9 _ 5 5 | 
						
							| 37 | 13 36 | cdp2 | ⊢ _ 7 _ 9 _ 9 _ 5 5 | 
						
							| 38 | 10 37 | cdp2 | ⊢ _ 0 _ 7 _ 9 _ 9 _ 5 5 | 
						
							| 39 | 9 38 31 | co | ⊢ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) | 
						
							| 40 | 30 39 16 | wbr | ⊢ ( 𝑘 ‘ 𝑚 )  ≤  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) | 
						
							| 41 | 40 27 24 | wral | ⊢ ∀ 𝑚  ∈  ℕ ( 𝑘 ‘ 𝑚 )  ≤  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) | 
						
							| 42 | 19 | cv | ⊢ ℎ | 
						
							| 43 | 29 42 | cfv | ⊢ ( ℎ ‘ 𝑚 ) | 
						
							| 44 |  | c4 | ⊢ 4 | 
						
							| 45 | 9 44 | cdp2 | ⊢ _ 1 4 | 
						
							| 46 | 44 45 | cdp2 | ⊢ _ 4 _ 1 4 | 
						
							| 47 | 9 46 31 | co | ⊢ ( 1 . _ 4 _ 1 4 ) | 
						
							| 48 | 43 47 16 | wbr | ⊢ ( ℎ ‘ 𝑚 )  ≤  ( 1 . _ 4 _ 1 4 ) | 
						
							| 49 | 48 27 24 | wral | ⊢ ∀ 𝑚  ∈  ℕ ( ℎ ‘ 𝑚 )  ≤  ( 1 . _ 4 _ 1 4 ) | 
						
							| 50 |  | c8 | ⊢ 8 | 
						
							| 51 | 44 50 | cdp2 | ⊢ _ 4 8 | 
						
							| 52 | 3 51 | cdp2 | ⊢ _ 2 _ 4 8 | 
						
							| 53 | 3 52 | cdp2 | ⊢ _ 2 _ 2 _ 4 8 | 
						
							| 54 | 44 53 | cdp2 | ⊢ _ 4 _ 2 _ 2 _ 4 8 | 
						
							| 55 | 10 54 | cdp2 | ⊢ _ 0 _ 4 _ 2 _ 2 _ 4 8 | 
						
							| 56 | 10 55 | cdp2 | ⊢ _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 | 
						
							| 57 | 10 56 | cdp2 | ⊢ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 | 
						
							| 58 | 10 57 31 | co | ⊢ ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) | 
						
							| 59 |  | cmul | ⊢  · | 
						
							| 60 | 17 3 12 | co | ⊢ ( 𝑛 ↑ 2 ) | 
						
							| 61 | 58 60 59 | co | ⊢ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 )  ·  ( 𝑛 ↑ 2 ) ) | 
						
							| 62 |  | cioo | ⊢ (,) | 
						
							| 63 | 10 9 62 | co | ⊢ ( 0 (,) 1 ) | 
						
							| 64 |  | cvma | ⊢ Λ | 
						
							| 65 | 59 | cof | ⊢  ∘f   · | 
						
							| 66 | 64 42 65 | co | ⊢ ( Λ  ∘f   ·  ℎ ) | 
						
							| 67 |  | cvts | ⊢ vts | 
						
							| 68 | 66 17 67 | co | ⊢ ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) | 
						
							| 69 |  | vx | ⊢ 𝑥 | 
						
							| 70 | 69 | cv | ⊢ 𝑥 | 
						
							| 71 | 70 68 | cfv | ⊢ ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 ) | 
						
							| 72 | 64 28 65 | co | ⊢ ( Λ  ∘f   ·  𝑘 ) | 
						
							| 73 | 72 17 67 | co | ⊢ ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) | 
						
							| 74 | 70 73 | cfv | ⊢ ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) | 
						
							| 75 | 74 3 12 | co | ⊢ ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) | 
						
							| 76 | 71 75 59 | co | ⊢ ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) | 
						
							| 77 |  | ce | ⊢ exp | 
						
							| 78 |  | ci | ⊢ i | 
						
							| 79 |  | cpi | ⊢ π | 
						
							| 80 | 3 79 59 | co | ⊢ ( 2  ·  π ) | 
						
							| 81 | 78 80 59 | co | ⊢ ( i  ·  ( 2  ·  π ) ) | 
						
							| 82 | 17 | cneg | ⊢ - 𝑛 | 
						
							| 83 | 82 70 59 | co | ⊢ ( - 𝑛  ·  𝑥 ) | 
						
							| 84 | 81 83 59 | co | ⊢ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) | 
						
							| 85 | 84 77 | cfv | ⊢ ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) | 
						
							| 86 | 76 85 59 | co | ⊢ ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) ) | 
						
							| 87 | 69 63 86 | citg | ⊢ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) )  d 𝑥 | 
						
							| 88 | 61 87 16 | wbr | ⊢ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 )  ·  ( 𝑛 ↑ 2 ) )  ≤  ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) )  d 𝑥 | 
						
							| 89 | 41 49 88 | w3a | ⊢ ( ∀ 𝑚  ∈  ℕ ( 𝑘 ‘ 𝑚 )  ≤  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 )  ∧  ∀ 𝑚  ∈  ℕ ( ℎ ‘ 𝑚 )  ≤  ( 1 . _ 4 _ 1 4 )  ∧  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 )  ·  ( 𝑛 ↑ 2 ) )  ≤  ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) )  d 𝑥 ) | 
						
							| 90 | 89 26 25 | wrex | ⊢ ∃ 𝑘  ∈  ( ( 0 [,) +∞ )  ↑m  ℕ ) ( ∀ 𝑚  ∈  ℕ ( 𝑘 ‘ 𝑚 )  ≤  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 )  ∧  ∀ 𝑚  ∈  ℕ ( ℎ ‘ 𝑚 )  ≤  ( 1 . _ 4 _ 1 4 )  ∧  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 )  ·  ( 𝑛 ↑ 2 ) )  ≤  ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) )  d 𝑥 ) | 
						
							| 91 | 90 19 25 | wrex | ⊢ ∃ ℎ  ∈  ( ( 0 [,) +∞ )  ↑m  ℕ ) ∃ 𝑘  ∈  ( ( 0 [,) +∞ )  ↑m  ℕ ) ( ∀ 𝑚  ∈  ℕ ( 𝑘 ‘ 𝑚 )  ≤  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 )  ∧  ∀ 𝑚  ∈  ℕ ( ℎ ‘ 𝑚 )  ≤  ( 1 . _ 4 _ 1 4 )  ∧  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 )  ·  ( 𝑛 ↑ 2 ) )  ≤  ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) )  d 𝑥 ) | 
						
							| 92 | 18 91 | wi | ⊢ ( ( ; 1 0 ↑ ; 2 7 )  ≤  𝑛  →  ∃ ℎ  ∈  ( ( 0 [,) +∞ )  ↑m  ℕ ) ∃ 𝑘  ∈  ( ( 0 [,) +∞ )  ↑m  ℕ ) ( ∀ 𝑚  ∈  ℕ ( 𝑘 ‘ 𝑚 )  ≤  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 )  ∧  ∀ 𝑚  ∈  ℕ ( ℎ ‘ 𝑚 )  ≤  ( 1 . _ 4 _ 1 4 )  ∧  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 )  ·  ( 𝑛 ↑ 2 ) )  ≤  ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) )  d 𝑥 ) ) | 
						
							| 93 | 92 0 8 | wral | ⊢ ∀ 𝑛  ∈  { 𝑧  ∈  ℤ  ∣  ¬  2  ∥  𝑧 } ( ( ; 1 0 ↑ ; 2 7 )  ≤  𝑛  →  ∃ ℎ  ∈  ( ( 0 [,) +∞ )  ↑m  ℕ ) ∃ 𝑘  ∈  ( ( 0 [,) +∞ )  ↑m  ℕ ) ( ∀ 𝑚  ∈  ℕ ( 𝑘 ‘ 𝑚 )  ≤  ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 )  ∧  ∀ 𝑚  ∈  ℕ ( ℎ ‘ 𝑚 )  ≤  ( 1 . _ 4 _ 1 4 )  ∧  ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 )  ·  ( 𝑛 ↑ 2 ) )  ≤  ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ  ∘f   ·  ℎ ) vts 𝑛 ) ‘ 𝑥 )  ·  ( ( ( ( Λ  ∘f   ·  𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )  ·  ( exp ‘ ( ( i  ·  ( 2  ·  π ) )  ·  ( - 𝑛  ·  𝑥 ) ) ) )  d 𝑥 ) ) |