Metamath Proof Explorer


Axiom ax-hgt749

Description: Statement 7.49 of Helfgott p. 70. For a sufficiently big odd N , this postulates the existence of smoothing functions h (eta star) and k (eta plus) such that the lower bound for the circle integral is big enough. (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Assertion ax-hgt749 𝑛 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ( ( 1 0 ↑ 2 7 ) ≤ 𝑛 → ∃ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ) ≤ ( 1 . 4 1 4 ) ∧ ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vn 𝑛
1 vz 𝑧
2 cz
3 c2 2
4 cdvds
5 1 cv 𝑧
6 3 5 4 wbr 2 ∥ 𝑧
7 6 wn ¬ 2 ∥ 𝑧
8 7 1 2 crab { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 }
9 c1 1
10 cc0 0
11 9 10 cdc 1 0
12 cexp
13 c7 7
14 3 13 cdc 2 7
15 11 14 12 co ( 1 0 ↑ 2 7 )
16 cle
17 0 cv 𝑛
18 15 17 16 wbr ( 1 0 ↑ 2 7 ) ≤ 𝑛
19 vh
20 cico [,)
21 cpnf +∞
22 10 21 20 co ( 0 [,) +∞ )
23 cmap m
24 cn
25 22 24 23 co ( ( 0 [,) +∞ ) ↑m ℕ )
26 vk 𝑘
27 vm 𝑚
28 26 cv 𝑘
29 27 cv 𝑚
30 29 28 cfv ( 𝑘𝑚 )
31 cdp .
32 c9 9
33 c5 5
34 33 33 cdp2 5 5
35 32 34 cdp2 9 5 5
36 32 35 cdp2 9 9 5 5
37 13 36 cdp2 7 9 9 5 5
38 10 37 cdp2 0 7 9 9 5 5
39 9 38 31 co ( 1 . 0 7 9 9 5 5 )
40 30 39 16 wbr ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 )
41 40 27 24 wral 𝑚 ∈ ℕ ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 )
42 19 cv
43 29 42 cfv ( 𝑚 )
44 c4 4
45 9 44 cdp2 1 4
46 44 45 cdp2 4 1 4
47 9 46 31 co ( 1 . 4 1 4 )
48 43 47 16 wbr ( 𝑚 ) ≤ ( 1 . 4 1 4 )
49 48 27 24 wral 𝑚 ∈ ℕ ( 𝑚 ) ≤ ( 1 . 4 1 4 )
50 c8 8
51 44 50 cdp2 4 8
52 3 51 cdp2 2 4 8
53 3 52 cdp2 2 2 4 8
54 44 53 cdp2 4 2 2 4 8
55 10 54 cdp2 0 4 2 2 4 8
56 10 55 cdp2 0 0 4 2 2 4 8
57 10 56 cdp2 0 0 0 4 2 2 4 8
58 10 57 31 co ( 0 . 0 0 0 4 2 2 4 8 )
59 cmul ·
60 17 3 12 co ( 𝑛 ↑ 2 )
61 58 60 59 co ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) )
62 cioo (,)
63 10 9 62 co ( 0 (,) 1 )
64 cvma Λ
65 59 cof f ·
66 64 42 65 co ( Λ ∘f · )
67 cvts vts
68 66 17 67 co ( ( Λ ∘f · ) vts 𝑛 )
69 vx 𝑥
70 69 cv 𝑥
71 70 68 cfv ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 )
72 64 28 65 co ( Λ ∘f · 𝑘 )
73 72 17 67 co ( ( Λ ∘f · 𝑘 ) vts 𝑛 )
74 70 73 cfv ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 )
75 74 3 12 co ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 )
76 71 75 59 co ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) )
77 ce exp
78 ci i
79 cpi π
80 3 79 59 co ( 2 · π )
81 78 80 59 co ( i · ( 2 · π ) )
82 17 cneg - 𝑛
83 82 70 59 co ( - 𝑛 · 𝑥 )
84 81 83 59 co ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) )
85 84 77 cfv ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) )
86 76 85 59 co ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) )
87 69 63 86 citg ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥
88 61 87 16 wbr ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥
89 41 49 88 w3a ( ∀ 𝑚 ∈ ℕ ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ) ≤ ( 1 . 4 1 4 ) ∧ ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 )
90 89 26 25 wrex 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ) ≤ ( 1 . 4 1 4 ) ∧ ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 )
91 90 19 25 wrex ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ) ≤ ( 1 . 4 1 4 ) ∧ ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 )
92 18 91 wi ( ( 1 0 ↑ 2 7 ) ≤ 𝑛 → ∃ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ) ≤ ( 1 . 4 1 4 ) ∧ ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) )
93 92 0 8 wral 𝑛 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ( ( 1 0 ↑ 2 7 ) ≤ 𝑛 → ∃ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘𝑚 ) ≤ ( 1 . 0 7 9 9 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ) ≤ ( 1 . 4 1 4 ) ∧ ( ( 0 . 0 0 0 4 2 2 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) )