| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 2 |  | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  𝑦  ∈  𝑧 ) | 
						
							| 4 | 3 | alimi | ⊢ ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 5 |  | nd1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 6 | 5 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 7 | 4 6 | syl5 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 8 | 2 7 | alrimi | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 9 | 1 8 | alrimi | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 10 | 9 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) |