| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑧 𝑧  =  𝑥 | 
						
							| 2 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑧 𝑧  =  𝑦 | 
						
							| 3 | 1 2 | nfor | ⊢ Ⅎ 𝑥 ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 ) | 
						
							| 4 | 3 | 19.32 | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) )  ↔  ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑥 ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 5 |  | orass | ⊢ ( ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑥 ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) )  ↔  ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ∀ 𝑥 ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) )  ↔  ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ∀ 𝑥 ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) ) | 
						
							| 7 |  | axi12 | ⊢ ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 8 |  | orass | ⊢ ( ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) )  ↔  ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) ) | 
						
							| 9 | 7 8 | mpbir | ⊢ ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 10 | 6 9 | mpgbi | ⊢ ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ∀ 𝑥 ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) |