| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑧 𝑧 = 𝑥 |
| 2 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑧 𝑧 = 𝑦 |
| 3 |
1 2
|
nfor |
⊢ Ⅎ 𝑥 ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) |
| 4 |
3
|
19.32 |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ↔ ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
| 5 |
|
orass |
⊢ ( ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) ) |
| 7 |
|
axi12 |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
| 8 |
|
orass |
⊢ ( ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) ) |
| 9 |
7 8
|
mpbir |
⊢ ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 10 |
6 9
|
mpgbi |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |