| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 𝑧  =  𝑥 | 
						
							| 2 |  | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 𝑧  =  𝑦 | 
						
							| 3 | 1 2 | nfor | ⊢ Ⅎ 𝑧 ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 ) | 
						
							| 4 | 3 | 19.32 | ⊢ ( ∀ 𝑧 ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) )  ↔  ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 5 |  | axc9 | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 6 | 5 | orrd | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 7 | 6 | orri | ⊢ ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 8 |  | orass | ⊢ ( ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) )  ↔  ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) ) | 
						
							| 9 | 7 8 | mpbir | ⊢ ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 10 | 4 9 | mpgbi | ⊢ ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 11 |  | orass | ⊢ ( ( ( ∀ 𝑧 𝑧  =  𝑥  ∨  ∀ 𝑧 𝑧  =  𝑦 )  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) )  ↔  ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) ) | 
						
							| 12 | 10 11 | mpbi | ⊢ ( ∀ 𝑧 𝑧  =  𝑥  ∨  ( ∀ 𝑧 𝑧  =  𝑦  ∨  ∀ 𝑧 ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) |