Step |
Hyp |
Ref |
Expression |
1 |
|
nfa1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 𝑧 = 𝑥 |
2 |
|
nfa1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 𝑧 = 𝑦 |
3 |
1 2
|
nfor |
⊢ Ⅎ 𝑧 ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) |
4 |
3
|
19.32 |
⊢ ( ∀ 𝑧 ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ↔ ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
5 |
|
axc9 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
6 |
5
|
orrd |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝑧 = 𝑦 ∨ ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
7 |
6
|
orri |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
8 |
|
orass |
⊢ ( ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) ) |
9 |
7 8
|
mpbir |
⊢ ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
10 |
4 9
|
mpgbi |
⊢ ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
11 |
|
orass |
⊢ ( ( ( ∀ 𝑧 𝑧 = 𝑥 ∨ ∀ 𝑧 𝑧 = 𝑦 ) ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) ) |
12 |
10 11
|
mpbi |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 ∨ ( ∀ 𝑧 𝑧 = 𝑦 ∨ ∀ 𝑧 ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |