Metamath Proof Explorer


Theorem axc16nf

Description: If dtru is false, then there is only one element in the universe, so everything satisfies F/ . (Contributed by Mario Carneiro, 7-Oct-2016) Remove dependency on ax-11 . (Revised by Wolf Lammen, 9-Sep-2018) (Proof shortened by BJ, 14-Jun-2019) Remove dependency on ax-10 . (Revised by Wolf Lammen, 12-Oct-2021)

Ref Expression
Assertion axc16nf ( ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑧 𝜑 )

Proof

Step Hyp Ref Expression
1 axc16g ( ∀ 𝑥 𝑥 = 𝑦 → ( ¬ 𝜑 → ∀ 𝑧 ¬ 𝜑 ) )
2 eximal ( ( ∃ 𝑧 𝜑𝜑 ) ↔ ( ¬ 𝜑 → ∀ 𝑧 ¬ 𝜑 ) )
3 1 2 sylibr ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑧 𝜑𝜑 ) )
4 axc16g ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑧 𝜑 ) )
5 3 4 syld ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑧 𝜑 → ∀ 𝑧 𝜑 ) )
6 5 nfd ( ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑧 𝜑 )